000186278 001__ 186278
000186278 005__ 20210129214848.0
000186278 0247_ $$2doi$$a10.1007/s00429-013-0652-1
000186278 0247_ $$2ISSN$$a1863-2653
000186278 0247_ $$2ISSN$$a1863-2661
000186278 0247_ $$2WOS$$aWOS:000348980800018
000186278 037__ $$aFZJ-2015-00362
000186278 082__ $$a610
000186278 1001_ $$0P:(DE-Juel1)131855$$aCieslik, Edna$$b0$$eCorresponding Author$$ufzj
000186278 245__ $$aShifted neuronal balance during stimulus-response integration in schizophrenia: an fMRI study
000186278 260__ $$aBerlin$$bSpringer$$c2015
000186278 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1421129911_25609
000186278 3367_ $$2DataCite$$aOutput Types/Journal article
000186278 3367_ $$00$$2EndNote$$aJournal Article
000186278 3367_ $$2BibTeX$$aARTICLE
000186278 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000186278 3367_ $$2DRIVER$$aarticle
000186278 520__ $$aSchizophrenia is characterized by marked deficits in executive and psychomotor functions, as demonstrated for goal-directed actions in the antisaccade task. Recent studies, however, suggest that this deficit represents only one manifestation of a general deficit in stimulus–response integration and volitional initiation of motor responses. We here used functional magnetic resonance imaging to investigate brain activation patterns during a manual stimulus–response compatibility task in 18 schizophrenic patients and 18 controls. We found that across groups incongruent vs. congruent responses recruited a bilateral network consisting of dorsal fronto-parietal circuits as well as bilateral anterior insula, dorsolateral prefrontal cortex (DLPFC) and the presupplementary motor area (preSMA). When testing for the main-effect across all conditions, patients showed significantly lower activation of the right DLPFC and, in turn, increased activation in a left hemispheric network including parietal and premotor areas as well as the preSMA. For incongruent responses patients showed significantly increased activation in a similar left hemispheric network, as well as additional activation in parietal and premotor regions in the right hemisphere. The present study reveals that hypoactivity in the right DLPFC in schizophrenic patients is accompanied by hyperactivity in several fronto-parietal regions associated with task execution. Impaired top-down control due to a dysfunctional DLPFC might thus be partly compensated by an up-regulation of task-relevant regions in schizophrenic patients
000186278 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000186278 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000186278 7001_ $$0P:(DE-Juel1)131699$$aMüller, Veronika$$b1$$ufzj
000186278 7001_ $$0P:(DE-HGF)0$$aKellermann, Tanja S.$$b2
000186278 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b3$$ufzj
000186278 7001_ $$0P:(DE-HGF)0$$aHalfter, Sarah$$b4
000186278 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b5$$ufzj
000186278 773__ $$0PERI:(DE-600)2303775-1$$a10.1007/s00429-013-0652-1$$gVol. 220, no. 1, p. 249 - 261$$n1$$p249 - 261$$tBrain structure & function$$v220$$x1863-2661$$y2015
000186278 8564_ $$uhttps://juser.fz-juelich.de/record/186278/files/FZJ-2015-00362.pdf$$yRestricted
000186278 909CO $$ooai:juser.fz-juelich.de:186278$$pVDB
000186278 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000186278 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000186278 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000186278 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000186278 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000186278 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000186278 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000186278 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000186278 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000186278 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000186278 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000186278 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000186278 9141_ $$y2015
000186278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131855$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000186278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131699$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000186278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161406$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000186278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000186278 9130_ $$0G:(DE-HGF)POF2-333$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vPathophysiological Mechanisms of Neurological and Psychiatric Diseases$$x0
000186278 9130_ $$0G:(DE-HGF)POF2-89571$$1G:(DE-HGF)POF2-89570$$2G:(DE-HGF)POF3-890$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x1
000186278 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000186278 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000186278 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x1
000186278 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x2
000186278 980__ $$ajournal
000186278 980__ $$aVDB
000186278 980__ $$aI:(DE-Juel1)INM-1-20090406
000186278 980__ $$aI:(DE-82)080010_20140620
000186278 980__ $$aI:(DE-Juel1)INM-3-20090406
000186278 980__ $$aUNRESTRICTED
000186278 981__ $$aI:(DE-Juel1)INM-3-20090406