000186286 001__ 186286
000186286 005__ 20240708132827.0
000186286 037__ $$aFZJ-2015-00370
000186286 041__ $$aEnglish
000186286 1001_ $$0P:(DE-Juel1)162280$$aGehrke, Hans-Gregor$$b0$$eCorresponding Author$$ufzj
000186286 1112_ $$aSecond International Conference on Nano materials and Nanocomposites$$cKottayam$$d2014-12-19 - 2014-12-21$$gICNM2014$$wIndia
000186286 245__ $$aDevelopment of nanomaterials for all-solid-state lithium ion batteries
000186286 260__ $$c2014
000186286 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1421149445_25619$$xInvited
000186286 3367_ $$033$$2EndNote$$aConference Paper
000186286 3367_ $$2DataCite$$aOther
000186286 3367_ $$2ORCID$$aLECTURE_SPEECH
000186286 3367_ $$2DRIVER$$aconferenceObject
000186286 3367_ $$2BibTeX$$aINPROCEEDINGS
000186286 520__ $$aIn conventional lithium ion batteries liquid electrolytes are used for the ionic transport. The organic solvents required cause safety issues as flammability and leakage. In order to avoid these hazards, the liquid electrolyte is replaced by solid electrolytes. Lithium ion conducting sulfides [1], oxides [2], and phosphates [3] are developed for the construction of all-solid-state Li-ion batteries. A promising oxide material with desirable properties is the garnet-structured Li7La3Zr2O12 (LLZ). Its ionic conductivity (about 10-4 S/cm) and thermal stability (up to 1250°C) are reasonably high. This material has a very large electrochemical window being stable up to 8 V vs. Li/Li+ making it feasible for desired high voltage cathode materials. Partial aliovalent substitution of Li by Al or Zr by Ta lowers the required crystallization temperature of the conductive cubic phase. However, compared to conventional liquid electrolytes, LLZ exhibits an about one order of magnitude higher ionic resistivity. Therefore, to maintain low overall resistances of the cells, thin film electrolytes are desirable to compensate the lower conductivity. The thin film deposition of cubic garnet structured LLZ has posed troubles on non-single crystalline substrates [4,5] so far. We successfully obtained cubic LLZ films by r.f. magnetron sputtering and dip coating on metal foil substrates and cathode material. These films were analyzed by X-ray diffraction, scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), and electrochemical tests. Thin electrolyte films were compared to reference bulk materials obtained from solid-state reaction powder synthesis, compaction and sintering..[1] Kamaya et al., Nature Materials 10 (2011) 682[2] Murugan et al., Angew. Chem. Int. Ed. 46(2007) 7778[3] Propovici et al., J. Am. Ceram. Soc. 94 (2011) 3847[4] Kalita et al., Solid State Ionics 2012 (229) 14[5] Chen et al. J., Mater. Chem. A. 2014 Accepted Manuscript
000186286 536__ $$0G:(DE-HGF)POF2-435$$a435 - Energy Storage (POF2-435)$$cPOF2-435$$fPOF II$$x0
000186286 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000186286 7001_ $$0P:(DE-Juel1)158085$$aDellen, Christian$$b1$$ufzj
000186286 7001_ $$0P:(DE-Juel1)140492$$aBitzer, Martin$$b2$$ufzj
000186286 7001_ $$0P:(DE-Juel1)161444$$aLobe, Sandra$$b3$$ufzj
000186286 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b4$$ufzj
000186286 7001_ $$0P:(DE-Juel1)145805$$aBünting, Aiko$$b5$$ufzj
000186286 7001_ $$0P:(DE-Juel1)156292$$aHammer, Eva-Maria$$b6$$ufzj
000186286 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b7$$ufzj
000186286 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b8$$ufzj
000186286 773__ $$y2014
000186286 909CO $$ooai:juser.fz-juelich.de:186286$$pVDB
000186286 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162280$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000186286 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158085$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000186286 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140492$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000186286 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161444$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000186286 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000186286 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145805$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000186286 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156292$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000186286 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000186286 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000186286 9132_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000186286 9131_ $$0G:(DE-HGF)POF2-435$$1G:(DE-HGF)POF2-430$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lNANOMIKRO$$vEnergy Storage$$x0
000186286 9141_ $$y2014
000186286 920__ $$lyes
000186286 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000186286 980__ $$aconf
000186286 980__ $$aVDB
000186286 980__ $$aI:(DE-Juel1)IEK-1-20101013
000186286 980__ $$aUNRESTRICTED
000186286 981__ $$aI:(DE-Juel1)IMD-2-20101013