001     186286
005     20240708132827.0
037 _ _ |a FZJ-2015-00370
041 _ _ |a English
100 1 _ |a Gehrke, Hans-Gregor
|0 P:(DE-Juel1)162280
|b 0
|e Corresponding Author
|u fzj
111 2 _ |a Second International Conference on Nano materials and Nanocomposites
|g ICNM2014
|c Kottayam
|d 2014-12-19 - 2014-12-21
|w India
245 _ _ |a Development of nanomaterials for all-solid-state lithium ion batteries
260 _ _ |c 2014
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1421149445_25619
|2 PUB:(DE-HGF)
|x Invited
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a In conventional lithium ion batteries liquid electrolytes are used for the ionic transport. The organic solvents required cause safety issues as flammability and leakage. In order to avoid these hazards, the liquid electrolyte is replaced by solid electrolytes. Lithium ion conducting sulfides [1], oxides [2], and phosphates [3] are developed for the construction of all-solid-state Li-ion batteries. A promising oxide material with desirable properties is the garnet-structured Li7La3Zr2O12 (LLZ). Its ionic conductivity (about 10-4 S/cm) and thermal stability (up to 1250°C) are reasonably high. This material has a very large electrochemical window being stable up to 8 V vs. Li/Li+ making it feasible for desired high voltage cathode materials. Partial aliovalent substitution of Li by Al or Zr by Ta lowers the required crystallization temperature of the conductive cubic phase. However, compared to conventional liquid electrolytes, LLZ exhibits an about one order of magnitude higher ionic resistivity. Therefore, to maintain low overall resistances of the cells, thin film electrolytes are desirable to compensate the lower conductivity. The thin film deposition of cubic garnet structured LLZ has posed troubles on non-single crystalline substrates [4,5] so far. We successfully obtained cubic LLZ films by r.f. magnetron sputtering and dip coating on metal foil substrates and cathode material. These films were analyzed by X-ray diffraction, scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), and electrochemical tests. Thin electrolyte films were compared to reference bulk materials obtained from solid-state reaction powder synthesis, compaction and sintering..[1] Kamaya et al., Nature Materials 10 (2011) 682[2] Murugan et al., Angew. Chem. Int. Ed. 46(2007) 7778[3] Propovici et al., J. Am. Ceram. Soc. 94 (2011) 3847[4] Kalita et al., Solid State Ionics 2012 (229) 14[5] Chen et al. J., Mater. Chem. A. 2014 Accepted Manuscript
536 _ _ |a 435 - Energy Storage (POF2-435)
|0 G:(DE-HGF)POF2-435
|c POF2-435
|f POF II
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Dellen, Christian
|0 P:(DE-Juel1)158085
|b 1
|u fzj
700 1 _ |a Bitzer, Martin
|0 P:(DE-Juel1)140492
|b 2
|u fzj
700 1 _ |a Lobe, Sandra
|0 P:(DE-Juel1)161444
|b 3
|u fzj
700 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 4
|u fzj
700 1 _ |a Bünting, Aiko
|0 P:(DE-Juel1)145805
|b 5
|u fzj
700 1 _ |a Hammer, Eva-Maria
|0 P:(DE-Juel1)156292
|b 6
|u fzj
700 1 _ |a Uhlenbruck, Sven
|0 P:(DE-Juel1)129580
|b 7
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 8
|u fzj
773 _ _ |y 2014
909 C O |o oai:juser.fz-juelich.de:186286
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162280
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)158085
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)140492
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161444
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145805
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)156292
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129580
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)161591
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-430
|0 G:(DE-HGF)POF2-435
|2 G:(DE-HGF)POF2-400
|v Energy Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l NANOMIKRO
914 1 _ |y 2014
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21