001     186334
005     20240619083504.0
024 7 _ |2 doi
|a 10.1140/epje/i2014-14094-1
024 7 _ |2 ISSN
|a 1292-8941
024 7 _ |2 ISSN
|a 1292-895X
024 7 _ |2 WOS
|a WOS:000344339100001
037 _ _ |a FZJ-2015-00410
082 _ _ |a 530
100 1 _ |0 P:(DE-HGF)0
|a Maeda, Kousaku
|b 0
|e Corresponding Author
245 _ _ |a How does thermodiffusion of aqueous solutions depend on concentration and hydrophobicity?
260 _ _ |a Berlin
|b Springer
|c 2014
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1421222061_12764
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a The thermal diffusion of aqueous solutions of mono-, di-ethylene glycols, poly(ethylene glycol), methanol, and glycerol is investigated systematically as a function of concentration using the Thermal Diffusion Forced Rayleigh Scattering (TDFRS). For all investigated binary mixtures, the Soret coefficient, S T , decays with increasing concentration of the non-aqueous component showing two regions. For aqueous solution of ethylene glycol, at a very low solute content the decay is steep, while it becomes less steep for higher solute concentration. All mixtures show a sign change of S T with concentration. The sign change concentration is discussed with respect to chemical structures of solute molecules and the partition coefficient, log p . It turns out that the number of hydroxyl groups plays an important role. For the investigated aqueous mixtures, we find empirical linear relations between the sign change concentration and the ratio of the number of hydroxyl groups to the number of carbon atoms as well as the partition coefficient, log p .
536 _ _ |0 G:(DE-HGF)POF2-451
|a 451 - Soft Matter Composites (POF2-451)
|c POF2-451
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-HGF)0
|a Shinyashiki, Naoki
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Yagihara, Shin
|b 2
700 1 _ |0 P:(DE-Juel1)131034
|a Wiegand, Simone
|b 3
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Kita, Rio
|b 4
773 _ _ |0 PERI:(DE-600)2004003-9
|a 10.1140/epje/i2014-14094-1
|g Vol. 37, no. 10, p. 94
|n 10
|p 94
|t The @European physical journal / E
|v 37
|x 1292-895X
|y 2014
856 4 _ |u https://juser.fz-juelich.de/record/186334/files/FZJ-2015-00410.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:186334
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131034
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-551
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Functional Macromolecules and Complexes
|x 0
913 1 _ |0 G:(DE-HGF)POF2-451
|1 G:(DE-HGF)POF2-450
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|v Soft Matter Composites
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l BioSoft
914 1 _ |y 2014
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21