000186381 001__ 186381
000186381 005__ 20210129214901.0
000186381 0247_ $$2doi$$a10.1016/j.jhydrol.2014.10.005
000186381 0247_ $$2ISSN$$a0022-1694
000186381 0247_ $$2ISSN$$a1879-2707
000186381 0247_ $$2WOS$$aWOS:000347018100073
000186381 0247_ $$2altmetric$$aaltmetric:21824767
000186381 037__ $$aFZJ-2015-00457
000186381 082__ $$a690
000186381 1001_ $$0P:(DE-HGF)0$$aLaloy, Eric$$b0$$eCorresponding Author
000186381 245__ $$aHigh-resolution moisture profiles from full-waveform probabilistic inversion of TDR signals
000186381 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2014
000186381 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1421306753_12764
000186381 3367_ $$2DataCite$$aOutput Types/Journal article
000186381 3367_ $$00$$2EndNote$$aJournal Article
000186381 3367_ $$2BibTeX$$aARTICLE
000186381 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000186381 3367_ $$2DRIVER$$aarticle
000186381 520__ $$aThis study presents an novel Bayesian inversion scheme for high-dimensional undetermined TDR waveform inversion. The methodology quantifies uncertainty in the moisture content distribution, using a Gaussian Markov random field (GMRF) prior as regularization operator. A spatial resolution of 1 cm along a 70-cm long TDR probe is considered for the inferred moisture content. Numerical testing shows that the proposed inversion approach works very well in case of a perfect model and Gaussian measurement errors. Real-world application results are generally satisfying. For a series of TDR measurements made during imbibition and evaporation from a laboratory soil column, the average root-mean-square error (RMSE) between maximum a posteriori (MAP) moisture distribution and reference TDR measurements is 0.04 cm3 cm-3. This RMSE value reduces to less than 0.02 cm3 cm-3 for a field application in a podzol soil. The observed model-data discrepancies are primarily due to model inadequacy, such as our simplified modeling of the bulk soil electrical conductivity profile. Among the important issues that should be addressed in future work are the explicit inference of the soil electrical conductivity profile along with the other sampled variables, the modeling of the temperature-dependence of the coaxial cable properties and the definition of an appropriate statistical model of the residual errors.
000186381 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000186381 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000186381 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000186381 7001_ $$0P:(DE-Juel1)129472$$aHuisman, Johan Alexander$$b1$$ufzj
000186381 7001_ $$0P:(DE-HGF)0$$aJacques, Diederik$$b2
000186381 773__ $$0PERI:(DE-600)1473173-3$$a10.1016/j.jhydrol.2014.10.005$$gVol. 519, p. 2121 - 2135$$nPart B$$p2121 - 2135$$tJournal of hydrology$$v519$$x0022-1694$$y2014
000186381 8564_ $$uhttps://juser.fz-juelich.de/record/186381/files/FZJ-2015-00457.pdf$$yRestricted
000186381 909CO $$ooai:juser.fz-juelich.de:186381$$pVDB:Earth_Environment$$pVDB
000186381 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000186381 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000186381 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000186381 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000186381 9141_ $$y2014
000186381 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000186381 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000186381 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000186381 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000186381 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000186381 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000186381 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000186381 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000186381 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000186381 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000186381 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000186381 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000186381 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000186381 980__ $$ajournal
000186381 980__ $$aVDB
000186381 980__ $$aI:(DE-Juel1)IBG-3-20101118
000186381 980__ $$aUNRESTRICTED