000186394 001__ 186394
000186394 005__ 20210129214902.0
000186394 0247_ $$2Handle$$a2128/9164
000186394 037__ $$aFZJ-2015-00470
000186394 041__ $$aEnglish
000186394 1001_ $$0P:(DE-Juel1)142576$$aQu, Wei$$b0$$eCollaboration Author
000186394 1112_ $$aEGU$$cVienna$$d2014-04-27 - 2014-05-02$$wAustria
000186394 245__ $$aMultivariate Distributions of Soil Hydraulic Parameters
000186394 260__ $$c2014
000186394 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1421306990_12761
000186394 3367_ $$033$$2EndNote$$aConference Paper
000186394 3367_ $$2DataCite$$aOutput Types/Conference Poster
000186394 3367_ $$2DRIVER$$aconferenceObject
000186394 3367_ $$2ORCID$$aCONFERENCE_POSTER
000186394 3367_ $$2BibTeX$$aINPROCEEDINGS
000186394 520__ $$aStatistical distributions of soil hydraulic parameters have to be known when synthetic fields of soil hydraulic prop-erties need to be generated in ensemble modeling of soil water dynamics and soil water content data assimilation.Pedotransfer functions that provide statistical distributions of water retention and hydraulic conductivity parame-ters for textural classes are most often used in the parameter field generation. Presence of strong correlations cansubstantially influence the parameter generation results. The objective of this work was to review and evaluateavailable data on correlations between van Genuchten-Mualem (VGM) model parameters. So far, two different ap-proaches were developed to estimate these correlations. The first approach uses pedotransfer functions to generateVGM parameters for a large number of soil compositions within a textural class, and then computes parameter cor-relations for each of the textural classes. The second approach computes the VGM parameter correlations directlyfrom parameter values obtained by fitting VGM model to measured water retention and hydraulic conductivitydata for soil samples belonging to a textural class. Carsel and Parish (1988) used the Rawls et al. (1982) pedo-transfer functions, and Meyer et al. (1997) used the Rosetta pedotransfer algorithms (Schaap, 2002) to developcorrelations according to the first approach. We used the UNSODA database (Nemes et al. 2001), the US SouthernPlains database (Timlin et al., 1999), and the Belgian database (Vereecken et al., 1989, 1990) to apply the secondapproach. A substantial number of considerable (>0.7) correlation coefficients were found. Large differences wereencountered between parameter correlations obtained with different approaches and different databases for thesame textural classes. The first of the two approaches resulted in generally higher values of correlation coefficientsbetween VGM parameters. However, results of the first approach application depend on pedotransfer relationshipsnot only within a given textural class but also on pedotransfer relationships within other textural classes since thepedotransfer relationships are developed across the database containing data for several textural classes. Therefore,joint multivariate parameter distributions for a specific class may not be sufficiently accurate. Currently PTF maygive the best prediction of the parameter itself, but they are not designed to estimate correlations between parame-ters. Covariance matrices for soil hydraulic parameters present an additional type of pedotransfer information thatneeds to be acquired and used whenever random sets of those parameters are to be generated.
000186394 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000186394 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000186394 7001_ $$0P:(DE-HGF)0$$aPachepsky, Yakov$$b1
000186394 7001_ $$0P:(DE-Juel1)129472$$aHuisman, Johan Alexander$$b2
000186394 7001_ $$0P:(DE-HGF)0$$aMartinez, Gonzalo$$b3
000186394 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b4
000186394 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b5
000186394 773__ $$y2014
000186394 8564_ $$uhttp://meetingorganizer.copernicus.org/EGU2014/EGU2014-6635.pdf
000186394 8564_ $$uhttps://juser.fz-juelich.de/record/186394/files/FZJ-2015-00470.pptx$$yOpenAccess
000186394 909CO $$ooai:juser.fz-juelich.de:186394$$pdriver$$pVDB$$popen_access$$popenaire
000186394 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142576$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000186394 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
000186394 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000186394 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000186394 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000186394 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000186394 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000186394 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000186394 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000186394 9141_ $$y2014
000186394 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000186394 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000186394 980__ $$aposter
000186394 980__ $$aVDB
000186394 980__ $$aUNRESTRICTED
000186394 980__ $$aI:(DE-Juel1)IBG-3-20101118
000186394 9801_ $$aFullTexts