000186436 001__ 186436
000186436 005__ 20240712100957.0
000186436 0247_ $$2doi$$a10.5194/acpd-14-3193-2014
000186436 0247_ $$2ISSN$$a1680-7367
000186436 0247_ $$2ISSN$$a1680-7375
000186436 0247_ $$2Handle$$a2128/8296
000186436 037__ $$aFZJ-2015-00512
000186436 082__ $$a550
000186436 1001_ $$0P:(DE-Juel1)7558$$aBasu, A.$$b0$$eCorresponding Author
000186436 245__ $$aAnalysis of the global atmospheric methane budget using ECHAM-MOZ simulations for present-day, pre-industrial time and the Last Glacial Maximum
000186436 260__ $$aKatlenburg-Lindau$$bEGU$$c2014
000186436 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1422343612_24690
000186436 3367_ $$2DataCite$$aOutput Types/Journal article
000186436 3367_ $$00$$2EndNote$$aJournal Article
000186436 3367_ $$2BibTeX$$aARTICLE
000186436 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000186436 3367_ $$2DRIVER$$aarticle
000186436 520__ $$aAtmospheric methane concentrations increased considerably from pre-industrial (PI) to present times largely due to anthropogenic emissions. However, firn and ice core records also document a notable rise of methane levels between the Last Glacial Maximum (LGM) and the pre-industrial era, the exact cause of which is not entirely clear. This study investigates these changes by analyzing the methane sources and sinks at each of these climatic periods. Wetlands are the largest natural source of methane and play a key role in determining methane budget changes in particular in the absence of anthropogenic sources. Here, a simple wetland parameterization suitable for coarse-scale climate simulations over long periods is introduced, which is derived from a high-resolution map of surface slopes together with various soil hydrology parameters from the CARAIB vegetation model. This parameterization was implemented in the chemistry general circulation model ECHAM5-MOZ and multi-year time slices were run for LGM, PI and present-day (PD) climate conditions. Global wetland emissions from our parameterization are 72 Tg yr−1 (LGM), 115 Tg yr−1 (PI), and 132 Tg yr−1 (PD). These estimates are lower than most previous studies, and we find a stronger increase of methane emissions between LGM and PI. Taking into account recent findings that suggest more stable OH concentrations than assumed in previous studies, the observed methane distributions are nevertheless well reproduced under the different climates. Hence, this is one of the first studies where a consistent model approach has been successfully applied for simulating methane concentrations over a wide range of climate conditions.
000186436 536__ $$0G:(DE-HGF)POF2-233$$a233 - Trace gas and aerosol processes in the troposphere (POF2-233)$$cPOF2-233$$fPOF II$$x0
000186436 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000186436 7001_ $$0P:(DE-Juel1)6952$$aSchultz, Martin$$b1$$ufzj
000186436 7001_ $$0P:(DE-Juel1)16212$$aSchröder, S.$$b2
000186436 7001_ $$0P:(DE-HGF)0$$aFrancois, L.$$b3
000186436 7001_ $$0P:(DE-HGF)0$$aZhang, X.$$b4
000186436 7001_ $$0P:(DE-HGF)0$$aLohmann, G.$$b5
000186436 7001_ $$0P:(DE-HGF)0$$aLaepple, T.$$b6
000186436 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acpd-14-3193-2014$$gVol. 14, no. 2, p. 3193 - 3230$$n2$$p3193 - 3230$$tAtmospheric chemistry and physics / Discussions$$v14$$x1680-7375$$y2014
000186436 8564_ $$uhttps://juser.fz-juelich.de/record/186436/files/FZJ-2015-00512.pdf$$yOpenAccess
000186436 8564_ $$uhttps://juser.fz-juelich.de/record/186436/files/FZJ-2015-00512.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000186436 8564_ $$uhttps://juser.fz-juelich.de/record/186436/files/FZJ-2015-00512.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000186436 8564_ $$uhttps://juser.fz-juelich.de/record/186436/files/FZJ-2015-00512.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000186436 8767_ $$92014-04-05$$d2014-04-08$$eAPC$$jZahlung erfolgt$$pacp-2013-891$$zHelmholtz-PUC-2014-12
000186436 909CO $$ooai:juser.fz-juelich.de:186436$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000186436 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16212$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000186436 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16212$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000186436 9132_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000186436 9131_ $$0G:(DE-HGF)POF2-233$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTrace gas and aerosol processes in the troposphere$$x0
000186436 9141_ $$y2014
000186436 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000186436 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000186436 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000186436 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000186436 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000186436 920__ $$lyes
000186436 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000186436 9801_ $$aFullTexts
000186436 980__ $$ajournal
000186436 980__ $$aVDB
000186436 980__ $$aUNRESTRICTED
000186436 980__ $$aFullTexts
000186436 980__ $$aI:(DE-Juel1)IEK-8-20101013
000186436 980__ $$aAPC
000186436 981__ $$aI:(DE-Juel1)ICE-3-20101013