000186445 001__ 186445
000186445 005__ 20210129214908.0
000186445 0247_ $$2doi$$a10.2136/sssaj2013.07.0264
000186445 0247_ $$2ISSN$$a0361-5995
000186445 0247_ $$2ISSN$$a1435-0661
000186445 0247_ $$2WOS$$aWOS:000341564100027
000186445 037__ $$aFZJ-2015-00520
000186445 082__ $$a550
000186445 1001_ $$0P:(DE-HGF)0$$aRodionov, Andrei$$b0$$eCorresponding Author
000186445 245__ $$aSensing of Soil Organic Carbon Using Visible and Near-Infrared Spectroscopy at Variable Moisture and Surface Roughness
000186445 260__ $$aMadison, Wis.$$bSSSA$$c2014
000186445 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1421654274_11850
000186445 3367_ $$2DataCite$$aOutput Types/Journal article
000186445 3367_ $$00$$2EndNote$$aJournal Article
000186445 3367_ $$2BibTeX$$aARTICLE
000186445 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000186445 3367_ $$2DRIVER$$aarticle
000186445 520__ $$aVariations in soil moisture and surface roughness are major obstacles for the proximal sensing of soil organic C (SOC) using visible and near-infrared spectroscopy (VIS-NIRS). We gained a significant improvement of SOC prediction under field conditions with a stepwise approach. This comprised of (i) the estimation of these disturbing factors and (ii) the subsequent use of this information in multivariate SOC prediction. We took 120 surface soil samples (SOC contents 6.55–13.40 g kg−1) from a long-term trial near Bonn, Germany. To assess soil moisture, we recorded VIS-NIR spectra on <2-mm sieved disturbed samples at seven different moisture levels (air-dried to 30% w/w). The impact of roughness on VIS-NIRS performance was studied with undisturbed samples (air-dried and at different moisture levels), which were scanned with a laser profiler after fractionation into six aggregate size classes. The results confirmed that it was possible to include VIS-NIRS based assessments of soil moisture [R2adj = 0.96; root mean square error of cross validation (RMSEcv) = 1.99% w/w] into the prediction of SOC contents for sieved samples <2 mm (R2adj = 0.81–0.94; RMSEp = 0.41–0.72 g SOC kg−1). However, for rough soil surfaces, SOC contents were overestimated, and the prediction of roughness indices using VIS-NIRS failed. Fortunately, surface roughness did not impair the VIS-NIRS assessment of soil moisture. Hence, we could directly estimate moisture via VIS-NIRS in undisturbed field samples and then incorporate this information into a moisture-dependent prediction of SOC contents. This provided accurate SOC estimates for field-moist, undisturbed samples (R2adj = 0.91). Deviations from the reference method (elemental analysis) were below 2 g SOC kg−1.
000186445 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000186445 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000186445 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000186445 7001_ $$0P:(DE-HGF)0$$aPätzold, Stefan$$b1
000186445 7001_ $$0P:(DE-HGF)0$$aWelp, Gerhard$$b2
000186445 7001_ $$0P:(DE-HGF)0$$aPallares, Ramon Cañada$$b3
000186445 7001_ $$0P:(DE-HGF)0$$aDamerow, Lutz$$b4
000186445 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b5$$ufzj
000186445 773__ $$0PERI:(DE-600)1481691-x$$a10.2136/sssaj2013.07.0264$$gVol. 78, no. 3, p. 949 -$$n3$$p949 - 957$$tSoil Science Society of America journal$$v78$$x0361-5995$$y2014
000186445 909CO $$ooai:juser.fz-juelich.de:186445$$pVDB:Earth_Environment$$pVDB
000186445 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000186445 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000186445 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000186445 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000186445 9141_ $$y2014
000186445 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000186445 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000186445 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000186445 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000186445 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000186445 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000186445 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000186445 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000186445 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000186445 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000186445 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000186445 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000186445 980__ $$ajournal
000186445 980__ $$aVDB
000186445 980__ $$aI:(DE-Juel1)IBG-3-20101118
000186445 980__ $$aUNRESTRICTED