000186583 001__ 186583
000186583 005__ 20240711085640.0
000186583 0247_ $$2doi$$a10.1021/jp509841s
000186583 0247_ $$2ISSN$$a1932-7447
000186583 0247_ $$2ISSN$$a1932-7455
000186583 0247_ $$2WOS$$aWOS:000345474000069
000186583 037__ $$aFZJ-2015-00656
000186583 082__ $$a540
000186583 1001_ $$0P:(DE-HGF)0$$aGuenther, Gerrit$$b0$$eCorresponding Author
000186583 245__ $$aSize-Dependent Phase Transformations in Bismuth Oxide Nanoparticles. II. Melting and Stability Diagram
000186583 260__ $$aWashington, DC$$bSoc.$$c2014
000186583 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1421853672_13621
000186583 3367_ $$2DataCite$$aOutput Types/Journal article
000186583 3367_ $$00$$2EndNote$$aJournal Article
000186583 3367_ $$2BibTeX$$aARTICLE
000186583 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000186583 3367_ $$2DRIVER$$aarticle
000186583 520__ $$aMelting of nanocrystalline bismuth oxide particles between 6 and 50 nm was investigated in situ in the transmission electron microscope (TEM). It revealed a size-dependent melting behavior with a strong melting point reduction (−55% at 6 nm). One reason is a −230 K offset in the bulk melting temperature which is apparently caused by the β-phase in which the nanomaterial resides. As a second reason, a strong size dependency was observed from which an approximate solid-surface energy of 0.3 J/m2 was determined. Yet, the conditions in the TEM could cause a lowering of the transition temperatures compared to chemically neutral conditions, although theoretical considerations predict reduction in the solid state to be negligible. Everything indicates that no stable, liquid surface layer forms prior to melting. In spite of the covalent-ionic bonds in this oxide material the qualitatively same size dependence shows like in metals. Combined with size-dependent evaporation examined in a companion study
000186583 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000186583 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000186583 7001_ $$0P:(DE-HGF)0$$aTheissmann, Ralf$$b1
000186583 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b2$$ufzj
000186583 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/jp509841s$$gVol. 118, no. 46, p. 27020 - 27027$$n46$$p27020 - 27027$$tThe @journal of physical chemistry <Washington, DC> / C$$v118$$x1932-7455$$y2014
000186583 8564_ $$uhttps://juser.fz-juelich.de/record/186583/files/FZJ-2015-00656.pdf$$yRestricted
000186583 909CO $$ooai:juser.fz-juelich.de:186583$$pVDB
000186583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000186583 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000186583 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000186583 9141_ $$y2014
000186583 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000186583 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000186583 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000186583 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000186583 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000186583 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000186583 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000186583 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000186583 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000186583 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000186583 980__ $$ajournal
000186583 980__ $$aVDB
000186583 980__ $$aI:(DE-Juel1)IEK-1-20101013
000186583 980__ $$aUNRESTRICTED
000186583 981__ $$aI:(DE-Juel1)IMD-2-20101013