000186613 001__ 186613
000186613 005__ 20240711085558.0
000186613 0247_ $$2doi$$a10.1007/s10853-014-8544-1
000186613 0247_ $$2ISSN$$a0022-2461
000186613 0247_ $$2ISSN$$a1573-4803
000186613 0247_ $$2WOS$$aWOS:000342177600001
000186613 037__ $$aFZJ-2015-00686
000186613 082__ $$a670
000186613 1001_ $$0P:(DE-HGF)0$$aGuenther, Gerrit$$b0
000186613 245__ $$aModels of size-dependent nanoparticle melting tested on gold
000186613 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2014
000186613 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1421854039_12684
000186613 3367_ $$2DataCite$$aOutput Types/Journal article
000186613 3367_ $$00$$2EndNote$$aJournal Article
000186613 3367_ $$2BibTeX$$aARTICLE
000186613 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000186613 3367_ $$2DRIVER$$aarticle
000186613 520__ $$aModels of melting taking into account the finite material size (as for example the diameter of a spherical nanoparticle) lead to a melting point depression compared to the bulk. Selected approaches are presented in this review and compared to available experimental data on gold. Their sensitivity to thermodynamic parameters such as molar volume, surface energy, and enthalpy of melting is highlighted. Within the given accuracy all models describing the non-surface-melting case seem to be valid for gold. In such cases, the simplest solution should be preferred.
000186613 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000186613 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000186613 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b1$$eCorresponding Author
000186613 773__ $$0PERI:(DE-600)2015305-3$$a10.1007/s10853-014-8544-1$$gVol. 49, no. 23, p. 7915 - 7932$$n23$$p7915 - 7932$$tJournal of materials science$$v49$$x1573-4803$$y2014
000186613 8564_ $$uhttps://juser.fz-juelich.de/record/186613/files/FZJ-2015-00686.pdf$$yRestricted
000186613 909CO $$ooai:juser.fz-juelich.de:186613$$pVDB
000186613 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000186613 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000186613 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000186613 9141_ $$y2014
000186613 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000186613 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000186613 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000186613 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000186613 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000186613 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000186613 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000186613 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000186613 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000186613 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000186613 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000186613 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000186613 980__ $$ajournal
000186613 980__ $$aVDB
000186613 980__ $$aI:(DE-Juel1)IEK-1-20101013
000186613 980__ $$aUNRESTRICTED
000186613 981__ $$aI:(DE-Juel1)IMD-2-20101013