001     186617
005     20240711085559.0
024 7 _ |2 doi
|a 10.1016/j.jeurceramsoc.2014.07.015
024 7 _ |2 ISSN
|a 0955-2219
024 7 _ |2 ISSN
|a 1873-619X
024 7 _ |2 WOS
|a WOS:000343357200005
037 _ _ |a FZJ-2015-00690
082 _ _ |a 660
100 1 _ |0 P:(DE-Juel1)162271
|a Gonzalez, Jesus
|b 0
|e Corresponding Author
245 _ _ |a Enhanced oxidation resistance of ZrB$_{2}$/SiC Composite through in situ reaction of gadolinium oxide in patterned surface cavities
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2014
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1421854628_15365
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a Micro-cavities on the surface of dense ZrB2/20 vol.% SiC composites, machined by ultra-fast laser ablation, were filled with Gd2O3 nanopowder and oxidized in static air at 1600 °C. Optimized rectangular pattern of cavities, 10 μm diameter and deep, 20 μm apart conferred improved oxidation resistance compared to the untreated ZrB2/20 vol.% SiC due to the formation of glasses of higher viscosity with lower oxygen diffusivities. Reduction of the oxidized depth was revealed by a significant decrease of 10 μm (60%) in the extent of the protective layer. The filled-cavity strategy leads to better protection against oxygen diffusivity into the composite without altering the bulk properties.
536 _ _ |0 G:(DE-HGF)POF2-899
|a 899 - ohne Topic (POF2-899)
|c POF2-899
|x 0
|f POF I
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-HGF)0
|a Cedillos-Barraza, Omar
|b 1
700 1 _ |0 P:(DE-Juel1)144959
|a Döring, Sven
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Nolte, Stefan
|b 3
700 1 _ |0 P:(DE-Juel1)161591
|a Guillon, Olivier
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Lee, William E.
|b 5
773 _ _ |0 PERI:(DE-600)2013983-4
|a 10.1016/j.jeurceramsoc.2014.07.015
|g Vol. 34, no. 16, p. 4157 - 4166
|n 16
|p 4157 - 4166
|t Journal of the European Ceramic Society
|v 34
|x 0955-2219
|y 2014
856 4 _ |u https://juser.fz-juelich.de/record/186617/files/FZJ-2015-00690.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:186617
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)162271
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144959
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161591
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-899
|1 G:(DE-HGF)POF3-890
|2 G:(DE-HGF)POF3-800
|a DE-HGF
|b Forschungsbereich Materie
|l Forschungsbereich Materie
|v ohne Topic
|x 0
913 1 _ |0 G:(DE-HGF)POF2-899
|1 G:(DE-HGF)POF2-890
|2 G:(DE-HGF)POF2-800
|a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21