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Abstract. We report on the performance of the first diamond neutron monochromator built at 

the ILL. It has been designed for the hot neutron diffractometer D9 with the aim of improving 

significantly the instrument performance in particular for short wavelengths in the 0.3-0.9 Å 

wavelength range. Diamond crystal plates with dimensions of 1.5 x 1.5 x 0.18 cm
3
 and an 

average mosaic spread of 0.15° have been synthesized at the University of Augsburg. They 

exhibited excellent neutron diffraction properties when examined on a neutron double-crystal 

test setup. Sufficiently thick diamond elements with a controlled mosaic spread of 0.25° have 

been obtained by stacking several of these crystals. First tests runs carried out at the ILL 

confirmed the predicted high reflectivity of the diamond stacks. The diamond prototype 

monochromator uses the (220) reflection in transmission geometry replacing the Cu (220) 

monochromator on D9 that has the same d-spacing. The final performance studies on D9 

showed that the diamond device did not perform better than the original copper crystal.  This 

unexpected result could be explained by significant optical aberrations caused by non-

uniformities of both the angular and spatial mosaic distribution in the individual diamond 

crystals, as revealed by a detailed characterisation study using high-energy X-ray diffraction. 

 

 

1. Introduction  

Thanks to its very favourable crystalline and nuclear properties, diamond offers theoretically the 

highest performance of all existing materials for neutron monochromator applications [1]. It has a very 

compact structure with a small unit cell (a = 3.5668 Å) composed of 8 carbon atoms having a big 

coherent scattering length (b = 0.665x10
-12

 cm) and very low incoherent and absorption cross-sections 
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for thermal neutrons. At a wavelength of 1.8 Å inc = 0.001x10
-24

 cm
2
 and abs = 0.0350x10

-24
 cm

2
, 

respectively. It has been shown that a sufficiently thick diamond crystal with an appropriate mosaic 

spread would outperform by far existing materials such as copper and germanium mosaic crystals, 

especially for the monochromatisation of hot neutrons, in the range of 0.3-1 Å [1,2]. However, when 

the present project started there we neither crystals of appropriate size available (at reasonable costs) 

nor existed a concept how to generate a defined mosaic spread in big diamond single crystals. Thus, 

the controlled synthesis of large area diamond crystals with sufficient thickness and appropriate 

mosaic spread represented quite a big challenge in material science. 

     This problem was tackled by a research group at the University of Augsburg that has succeeded in 

producing mosaic diamond crystals using plasma chemical vapour deposition (MWPCVD). 

Heteroepitaxial diamond layers are grown in the <001> direction on a 150 nm thick iridium (001) film 

coated onto a thin layer of yttria-stabilised zirconia deposited on a silicon (001) wafer [3,4]. The 

surface of crystal plates is nearly parallel to (100) crystallographic planes, typically a few degrees off 

while both edges are parallel to (110)-type directions. In the meantime it is possible to obtain good 

quality crystal plates that are up to 0.18 cm thick with lateral dimensions of 1.5 x 1.5 cm
2
. Neutron 

double-crystal diffraction studies of a great number of samples has shown a high diffraction efficiency 

yielding values of the peak reflectivity close to the theoretical predictions [4,5]. The potential of 

heteroepitaxial diamond crystals suitable for neutron monochromators has thus been demonstrated 

unequivocally. Following this promising result, we decided to build a full-scale prototype 

monochromator for the hot neutron single crystal diffractometer D9 at the ILL [6].  It should produce 

the highest performance ever achieved at short wavelengths and would thus represent a significant 

improvement for reactor based hot neutron instruments. 

     In the following sections we report on the design, describe the different steps involved in the 

construction and report on the performance of the first diamond monochromator. 

 

2. Monochromator layout 

The diffractometer D9 is presently equipped with a copper (220) monochromator in transmission 

geometry composed of 3 flat, 0.8 cm thick mosaic crystal plates characterised by a mosaic distribution 

of 0.25°. With an active area of 6 x 6 cm
2
, it has been optimised to provide neutrons in the wavelength 

range from 0.3 to 0.9 Å. The monochromator is flat in order to achieve polychromatic pseudo-focusing 

at the sample position according to the geometry of the incoming white beam [6]. 

     The prototype diamond monochromator was designed specifically for D9 to replace the existing 

copper monochromator with the aim of improving significantly the performance of this instrument [6]. 

To compare directly both monochromators in terms of neutron flux and resolution, we have chosen 

diamond crystals with characteristics similar to that of the copper crystals currently used on D9, i.e. 

identical mosaic spread, d-spacing and active area. 

 

3. Neutron diffraction properties of the diamond crystals 
To provide the material for the construction of the monochromator, more than 50 diamond crystals 

were grown at the University of Augsburg. The neutron diffraction properties of all these diamond 

samples were studied on the double-crystal test instrument T13C at the ILL. A perfect Ge (331) 

monochromator crystal selected a wavelength of 1 Å out of a thermal guide tube. The effective 

neutron mosaic spread was determined as the full width at half height of (220) rocking curves recorded 

in transmission geometry. The beam cross-section was 0.2 x 0.2 cm
2
. Since the d-spacing of Ge (331) 

is very close to that of diamond (220), dGe331 = 1.296 Å ~ dC*220 = 1.261 Å, the double-crystal 

configuration was parallel and the arrangement nearly dispersion-free. Thus the width of the rocking 

curve represented directly the mosaic distribution of the sample under study. Moreover, there was no 

/2-contamination since the curvature of the thermal neutron guide cuts off neutrons of wavelength 

below 0.8 Å. As a result, the neutron reflectivity could directly be derived from the crystal rocking 

curve as the ratio R() = Ir()/I0 , where I0 is the intensity of the direct beam  and Ir is the intensity of 

the reflected beam. The peak reflectivity is the value of R() in the peak centre.
 

International Workshop on Neutron Optics and Detectors (NOP&D 2013) IOP Publishing
Journal of Physics: Conference Series 528 (2014) 012001 doi:10.1088/1742-6596/528/1/012001

2



     A typical neutron rocking curve obtained from a 0.18 cm thick diamond crystal is shown in figure 

1. The peak reflectivity is close to 34.5% for a FWHM of 0.18°. It corresponds to 80% of the 

theoretical peak reflectivity calculated from the Darwin model for ideally imperfect mosaic crystals 

[7]. The origin of the lower reflectivity could be assigned to primary extinction processes and some 

crystal inhomogeneities [8]. 

     The individual diamond single crystal platelets exhibited high reflectivity, already comparable to 

that of the best monochromator elements made of copper mosaic crystals despite the fact that their 

thickness was still significantly below the theoretical optimum. To use the full potential of diamond 

the thickness of the crystals had to be increased. At the same time, to meet the instrument 

requirements, it should be possible to tailor the mosaic spread. 

 

  

Figure 1. Experimental and theoretical neutron 

rocking curves at 1 Å of a mosaic diamond (C*) 

(220) crystal in Laue geometry with a mosaic 

spread of 0.3° and a thickness of 0.18 cm. For 

comparison, the experimental rocking curve of 

the mosaic Cu (220) crystal presently used on 

D9 as monochromator is shown too. 

Figure 2. Theoretical neutron peak reflectivity 

for  = 0.84 Å and 0.5 Å as a function of crystal 

thickness for diamond (220) and Cu (220) in 

Laue geometry with the same intrinsic mosaic 

spread of 0.25°. The black dots indicate the 

theoretically predicted peak reflectivities of Cu 

and C* as crystal monochromators on D9. 
 

 

 

4. Composite diamond crystal systems 

First of all we consider the crystal thickness needed to maximise the neutron reflectivity of diamond. 

Figure 2 shows the theoretical peak reflectivity of the diamond (220) reflection in transmission 

geometry as a function of crystal thickness for two short wavelengths  = 0.5 Å and 0.8 Å and for an 

intrinsic mosaic spread of 0.25°. It should be mentioned at this point that due to secondary extinction 

the neutron mosaic spread defined as the FWHM of the diffraction peak is always a little wider than 

the intrinsic crystal mosaic spread that is given by the average angular spread of the mosaic blocks or 

the lattice tilts, see [1]. If not stated otherwise, by mosaic spread we mean the neutron rocking curve 

width. It can be seen that the peak reflectivity reaches a maximum at an optimum thickness, topt, that 

depends on the wavelength, see also [9]. Thanks to the very small capture and inelastic scattering 

cross-sections of carbon the maximum peak reflectivity approaches 50 % for both wavelengths. The 

calculations show that the thickness of the crystals available (t ~ 0.18 cm) is too small with respect to 

the required values as predicted by the theory: topt ~ 1 cm at  = 0.8 Å and topt ~ 2 cm at  = 0.5 Å. 

     At this point it should be mentioned that not only capture and inelastic scattering contribute to the 

attenuation of the neutron beam, see [10,11]. Because carbon is such a strong scatterer, also multiple 
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elastic scattering effects competing with the main diffraction process could significantly affect the 

reflectivity whereas for copper capture and inelastic scattering dominate the attenuation. Taking this 

fact into account, the optimum thickness would be smaller than the values given above. 

 

     Because the synthesis of 1 cm-thick diamond crystals with a mosaic distribution of 0.25° is 

currently impossible, we decided to build a composite crystal system by stacking several thin diamond 

crystal pieces of high quality, each piece being slightly misoriented with respect to its neighbour by an 

angle  [5]. Note that the term high quality refers to crystals of type A as defined in the study 

described in ref. [8].The effective total mosaic spread of the composite crystal system is the average 

spread of the n crystal plates plus n-1 times the inclination angle between the plates.  Besides the 

optimisation of the effective thickness for a given wavelength, an important advantage of this 

technique is that the global mosaic distribution of the crystal stack can be tailored: the misorientation 

angle must not always be constant within each stack but can be varied if required. This technique 

called onion peel method had been successfully employed earlier for producing highly anisotropic 

copper crystals with a mosaic spread well adapted for neutron monochromators [12]. It works well if 

the inclination angle is smaller than or equal to the mosaic spread. Otherwise holes will appear on the 

angular profile. 

     Due to the limited number of available crystals, the best compromise was a stack consisting of 

three plates to obtain an effective thickness of 0.55 cm. Such a stack would theoretically outperform a 

mosaic copper for the monochromatisation of hot neutrons by more than a factor two as shown in 

figure 2. The angle was chosen close to 0.05° in order to achieve a global mosaic spread of the 

stacks close to 0.25°. 

 

Figure 3. High-energy X-ray diffraction images and peak profiles (C*(220) 

reflection) showing the evolution of the mosaic distribution during the stacking 

procedure. A (left): single crystal plate; b (middle): two-crystal stack; c (right): 

final stack of three crystals (thickness = 0.55 cm). Note that the angle on the 

images appears to be bigger than the real one due to the projection. 
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     The production of the composite crystal systems was achieved by using high-energy X-ray 

diffraction for the precise orientation of the slabs [13]. A high-resolution, two-dimensional detector 

enabled the visualisation of the diffraction image and the determination of the peak position (20) with 

an accuracy of 30 arc seconds. Due to the high energy of hard X-rays (100-450 keV), absorption is 

small compared to that of standard X-rays (30 keV). As a consequence, the whole bulk of the crystals 

was probed similar to diffraction experiments with neutrons which offered the opportunity to observe 

simultaneously diffraction peaks from several crystals stacked together. Thus high-energy, white-beam 

X-ray diffraction was well suited for assembling stacks of diamond single crystals as described in the 

next paragraphs. 

     First, a diamond platelet (crystal 1) was mounted onto the sample table that was equipped with x-y-

z translation stages and angular rotation stages. When placed in the white beam, the crystal 

diffracted X-rays at the Bragg angle 0 according to its orientation (figure 3a). The second crystal 

attached to an aluminium support (crystal 2) was positioned in front of the first one. A specific and 

very accurate mechanical support had been developed for this purpose at the ILL consisting of a 

combination of a goniometer and a translation stage. Then crystal 2 was carefully aligned at the 

desired angle 0 + , moved very close to the first crystal and then bonded on the latter using a carbon 

based glue (figure 3b). The translation stage had been specially prepared to keep the precise 

orientation during the transfer operation. Finally, to complete the stack, the third crystal was aligned 

and glued onto the second one following the same procedure. This technique allowed a precise 

orientation of crystallographic planes within an accuracy of 0.01° after gluing. In addition, as shown in 

figure 3c, such an in-situ alignment enabled us to control and optimize the peak profile if necessary. 

     A total of 16 stacks with a neutron mosaic spread of 0.25° ± 0.1° were successfully prepared using 

this technique. The reflectivity of the stacks was measured using neutrons on the diffractometer T13C 

at the ILL giving a typical peak reflectivity of 41% at 1 Å. Earlier measurements carried out on D9 at 

smaller wavelengths studying a test stack on the sample position had confirmed its outstanding 

performance as shown in figure 4. Even with a bigger mosaic spread the peak reflectivity of the 

diamond stack exceeded by far that of the copper crystal. Note that the rocking curves were wider than 

the mosaic spread of the crystals under study because their reflection curves were convoluted with the 

rocking curve of the D9 monochromator that served as first crystal in this double-crystal arrangement. 

 

  

Figure 4. Experimental neutron rocking curves for  = 0.84 Å (left) and 0.5 Å (right) obtained 

with a 0.55 cm thick diamond composite system (FWHM = 0.4°) and a 0.8 cm thick Cu (220) 

crystal (FWHM = 0.25°).  
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5. Performance of the diamond monochromator 

A photograph of the new diamond (220) monochromator consisting of 4 columns of 4 composite 

crystal stacks that are approximately 0.55 cm thick with a global mosaic distribution close to 0.25° is 

shown in figure 5. The crystals were glued onto a backing plate cut from a perfect silicon crystal. 

Again high-energy X-ray diffraction was used to ensure an alignment of the composite systems with 

an accuracy of better than 0.05°. The monochromator was installed on D9 in February 2013 and tested 

in the same configuration as the copper device. 

 

 

  

Figure 5. Photograph of the prototype diamond 

monochromator for the instrument D9 at the ILL. 

Figure 6. Peak width as a function of scattering 

angle 2 measured with a perfect Si crystal on 

the sample position for = 0.84 Å with both the 

diamond and the copper monochromator. 

 

5.1. Neutron flux 

The neutron flux at 0.84 Å and at 0.5 Å was measured with a neutron monitor at the exit of the D9 

monochromator casemate. Surprisingly, it was observed that the diamond monochromator did not 

provide any gain in neutron flux as compared to copper. The neutron flux was also checked at the 

sample position by recording the intensity peak profiles of Bragg reflections from a perfect Si crystal 

as a function of the sample scattering angle 2. The integrated peak reflectivity calculated from these 

measurements confirmed that there was no increase of the neutron flux provided by the diamond 

monochromator. 

 

5.2. Resolution 

Figure 6 shows the resolution curves of the instrument obtained with the diamond and copper 

monochromators. The two measurements were taken at the same Bragg angle  corresponding to a 

neutron wavelength of 0.84 Å. As expected, the minimum of the peak width occurred at a scattering 

angle 2 close to 2 and the resolution rapidly decreased for 2. Moreover, the resolution 

measured with diamond was inferior to that of copper. From figure 6, with the aid of the well-known 

Cagliotti formula [15] and by setting 1 =3 = 0 (no collimation) and 2 = 0.75°, we obtained Cu = 

0.22° and C* = 0.3° where n are the opening angles of the beam collimation and  is the neutron 

mosaic spread, respectively. These values were consistent with mosaic spread measured on T13C from 

rocking curves of single crystal elements. 

 

6. Crystal analysis and discussion 

As already mentioned in the previous section, quite unexpectedly the performance of the prototype 

diamond monochromator in terms of both neutron flux and resolution did not exceed that of the 

existing copper crystal. Considering the measured high reflectivity of the diamond stacks that 
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composed the monochromator, such a low level of performance suggests that an important part of the 

diffracted neutron beam did not reach the sample position but was dispersed by a non-uniformity of 

the crystal mosaic structure. On the double-crystal setup at T13C the detector was wide open and 

always received all the diffracted intensity. 

     To validate this assumption, a structural analysis of diamond crystals was performed using the 

high-energy X-ray diffractometer at the ILL [13] that is a powerful tool to investigate crystals defects 

on the macroscopic scale, i.e. in the mm and sub-mm range. A CCD detector permits to visualize 

structural defects of the crystal lattice, such as mosaicity, sub grains and curvature. For a perfect 

silicon crystal, the diffraction spot is a straight and narrow line with a width equal to the generator 

focus size as shown in figure 7a. The height of the spot corresponds to the crystal size. For a non-

perfect crystal, the width of the diffraction spot is expanded as a function of both the mosaicity and 

lattice plane curvature. As an example, the diffraction image in figure 7b obtained from the (220) 

reflection of a flat copper crystal currently used on D9 shows a nicely uniform mosaic distribution.  

     Figure 7c represents a typical diffraction image of the (220) reflection from a diamond crystal. The 

beam size was 2 x 2 cm² so that the full crystal was illuminated by the X-rays. The shape of the image 

indicates a complex mosaic structure with substantial variations of the peak position in the direction of 

X-ray scattering (angle 2) and also in the vertical direction. Since it is not easy to separate 

contributions from mosaicity and curvature to the horizontal broadening of the peak width, the crystal 

was scanned from one end to the other using a narrow beam 0.1 cm wide and 2 cm high so that the 

effect of horizontal curvature could be neglected. Diffraction images were taken in steps of 0.1 cm 

along the y-direction of the crystal, see the series of images in figure 8. This scan highlighted relevant 

information regarding the effect of structural defects in diamond crystals on the reflection properties.  

 

Figure 7. High-energy X-ray diffraction images and peak profiles recorded with a 

perfect Si crystal (left), with a 0.8 cm thick copper mosaic crystal used on D9 

(middle) and with a 0.18 cm thick diamond crystal plate (right). The crystal is fully 

illuminated by the X-ray beam of cross section 2 x 2 cm
2
. 

 

     Indeed a peak shift h of 0.15° over the length of the plate was observed along the y-direction 

which indicated a bending of the lattice planes perpendicular to the <100> axis. It corresponded to an 

average radius of curvature of 5.7 m. Such a curvature in diamond crystals had already been reported 

earlier using neutron and X-ray diffraction [2, 8]. It was confirmed in the present study that most of 

the diamond crystals exhibited a curvature with a radius in the range from 2 to 5 metres along one 

(100)-direction. Such a relatively strong curvature can indeed affect the performance of the 

International Workshop on Neutron Optics and Detectors (NOP&D 2013) IOP Publishing
Journal of Physics: Conference Series 528 (2014) 012001 doi:10.1088/1742-6596/528/1/012001

7



monochromator because part of the beam is not fully reflected onto the sample. In fact, in the worst 

case of defocusing, a horizontally bent, 1.5 cm wide crystal with a radius of curvature of 3.5 m 

produces a fan of 0.5° that after 3 m flight path broadens the beam by 2.6 cm, much bigger than the 

sample reception width of about 0.5 cm. Thus the pseudo focusing effect that is an important feature at 

D9 is seriously reduced. This rough estimation already explains the fact that the observed flux was 

significantly smaller than that expected for a perfectly flat monochromator crystal. 

     Even more surprisingly, the diffraction image was inclined with respect to the direct beam (z-

direction). This indicated a screw type deformation of the crystal lattice along the vertical <220> axis. 

A maximum twist angle of 0.07°/cm (v ~ 0.1°) was observed at each end of the crystal plate. In 

addition, this twist was not constant but varied strongly with the y position and even changed sign at y 

close to -1 mm as revealed by the inclination of the image with regard to the vertical direction. Such a 

change of sign and thus sense of the twist suggests that the crystal deformation in the perpendicular 

direction was quite complex. 

 

Figure 8. High-energy X-ray diffraction images obtained from a 0.18 cm thick diamond crystal plate 

with a beam 0.1 cm wide and 2 cm high. The crystal was scanned along the y axis in steps of 0.1 cm. 

 

     In addition to these features on the angular scale we observed an important non-uniformity of the 

spatial mosaic distribution, too. The local (intrinsic) X-ray mosaic spread 0was much narrower than 

the effective mosaic eff observed from the entire crystal, see figures 7c and 8. The local mosaic 

distribution 0 could be determined from the horizontal cross section of the diffraction spot by taking a 

small region of interest in order to simulate a beam cross section of 1 x 1 mm
2
, i.e. 3 pixels high. Thus 

any broadening of the diffraction spot due to bending or twist deformation could be neglected. At the 

centre of the diamond plate, we found a mosaic 0 of as small as 0.05°. Such a small value is to be 

compared to the 0.22° measured for eff as determined from figure 7c. Moreover, as illustrated in 

figure 8, 0 strongly varied not only between the two ends of the plate in the y direction, but also from 

the top to the bottom in the z direction. For instance, for y = 7 mm 0 was close to 0.1°, twice the value 

at the centre of the plate.   

     It is emphasized once more that the neutron beam geometry on D9 had been designed for a flat 

monochromator in Laue configuration. In the horizontal direction an intermediate neutron source is 

imaged onto the sample position if a flat mosaic crystal monochromator is used. Also a deformation of 

the crystal lattice in the vertical plane affects the monochromator performance dispersing the neutron 

beam and degrading the instrument performance in terms of flux on the sample, although it is smaller 

than in the scattering plane. 

     The maximum acceptable angular deviation on D9 can be estimated by considering the beam 

geometry. The distance between the monochromator and the sample position is close to 3 metres. 

Usually a collimator of 1 to 6 mm diameter is mounted at a distance of 2.4 m from the monochromator 

position. Calculations show that an angular deviation of the diffracting planes of 0.1° would already 

degrade the neutron flux at the sample position. Indeed, it would induce a spatial deviation of the 

diffracted beam intensity of the order of 10 mm at the collimator position so that a substantial part of 

the beam is stopped by the shielding. Such an angular limit is smaller than the typical horizontal peak 

shift of 0.15° observed for most crystals.  

     Depending on the sense of curvature (concave or convex), both horizontal and vertical crystal 

curvatures give rise to under- or overfocusing effects increasing the dilution of neutrons at the sample 
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position. The screw type deformation also disperses neutrons leading to a loss of otherwise useful flux. 

Finally, the non-uniform spatial distribution of the mosaicity causes a degradation of the instrument 

resolution and may cause a non-uniform intensity distribution over the beam spot received by the 

sample which might affect the quality of the experiments. 
  
7. Conclusion 

The first neutron monochromator made of diamond mosaic crsytals has been built at the ILL with the 

aim to upgrade its hot neutron diffractometer D9. This prototype device is composed of 16 crystal 

stacks 0.55 cm thick and 1.5 x 1.5 cm² wide with an effective mosaic spread between 0.25° and 0.30°. 

Double-crystal experiments conducted at the ILL have shown that such composite systems would 

outperform existing copper crystal monochromators by more than a factor 2 for the production of short 

neutron wavelengths below 1 Å. However, the diamond prototype device did not provide any gain 

over the copper monochromator in terms of both neutron flux at the sample position and resolution.  

     Detailed characterisation studies using high-energy X-ray diffraction revealed that most of the 

diamond crystals exhibited quite complex structural deformations of the lattice planes such as 

curvature and twist. The spatial mosaic distribution was not uniform as well. These non-uniformities 

of the spatial and angular mosaic block distribution led to even a slight decrease of the diamond 

monochromator performance compared to that of the existing copper monochromator with undistorted 

lattice planes and a homogeneous distribution of the mosaic structure. 
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