000186705 001__ 186705
000186705 005__ 20210309072150.0
000186705 0247_ $$2Handle$$a2128/8469
000186705 0247_ $$2ISSN$$a1866-1777
000186705 020__ $$a978-3-89336-992-8
000186705 037__ $$aFZJ-2015-00777
000186705 041__ $$aEnglish
000186705 1001_ $$0P:(DE-Juel1)142375$$aCallsen, Martin$$b0$$eCorresponding Author$$gmale$$ufzj
000186705 245__ $$aAb initio investigations of π-conjugated-molecule-metal interfaces for molecular electronics and spintronics$$f2010-09-01 - 2013-11-29
000186705 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2014
000186705 300__ $$aVIII, 155 S.
000186705 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1428503793_2402
000186705 3367_ $$02$$2EndNote$$aThesis
000186705 3367_ $$2DRIVER$$adoctoralThesis
000186705 3367_ $$2BibTeX$$aPHDTHESIS
000186705 3367_ $$2DataCite$$aOutput Types/Dissertation
000186705 3367_ $$2ORCID$$aDISSERTATION
000186705 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v92
000186705 502__ $$aRWTH Aachen, Diss., 2013$$bDr.$$cRWTH Aachen$$d2013
000186705 520__ $$aThe demand for continuous miniaturization of electronic devices poses an enormous challenge to conventional electronics. Instead of further miniaturizing the already established silicon based technology beyond the nanoscale, designing electronic devices by the bottom-up strategy is a promising alternative. As the currently smallest imaginable parts for electronic devices, single atoms or molecules adsorbed on a substrate are the subject of research in the field of molecular electronics. In addition molecular spintronics is a quickly rising field, which promises advantages over electronics like a lower power consumption. In spintronics the charge current is replaced by a spin current. Both molecular electronics and molecular spintronics require a proper theoretical description to design new materials and to propose candidates for future devices. Density functional theory is the method of choice to efficiently describe the molecule surface interfaces under consideration. For a realistic description of the system a suitable approximation for the exchange correlation functional has to be made. In particular for weakly bound organic molecules adsorbed on surfaces common approximations to the exchange correlation functional fail to correctly account for van der Waals interactions, which are in this case the dominant contribution to the binding. To find a correction for this deficiency is still subject of current research. In this thesis we investigate molecule surface systems of small $\pi$ conjugated molecules adsorbed on metal surfaces. For thiophene on Cu(111) we find weak chemisorption as binding mechanism while cyclooctatetraene is physisorbed on Au(111) and chemisorbed on the metal (100) surfaces of Au, Ag and Cu. In all these regimes of binding strength we asses semi-empirical and $\textit{ab initio}$ approaches to correct for vdWinteractions in DFT. Based on the insights gained about the organic metal interfaces for different molecule surface interaction strengths, we propose two promising magnetic systems for molecular spintronics applications. Cyclooctatetraene adsorbed on magnetic transition metal adatoms on Au(111) shows sharp spin split molecular orbital like features, which are characteristic for a spin filter. Paracyclophane adsorbed on the ferromagnetic Fe/W(110) surface and the antiferromagnetic Fe/W(100) surface in addition to the spin filter characteristics is an example for the modification of the magnetic properties of a surface by the adsorption of organic molecules. In particular the exchange coupling strength between the Fe atoms directly interacting with the molecule is increased, which leads to higher coercivity fields and Curie temperatures of the sample.
000186705 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000186705 650_7 $$0V:(DE-588b)4012494-0$$2GND$$aDissertation$$xDiss.
000186705 773__ $$y2014
000186705 8564_ $$uhttps://juser.fz-juelich.de/record/186705/files/FZJ-2015-00777.pdf$$yOpenAccess
000186705 8564_ $$uhttps://juser.fz-juelich.de/record/186705/files/FZJ-2015-00777.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000186705 8564_ $$uhttps://juser.fz-juelich.de/record/186705/files/FZJ-2015-00777.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000186705 8564_ $$uhttps://juser.fz-juelich.de/record/186705/files/FZJ-2015-00777.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000186705 909CO $$ooai:juser.fz-juelich.de:186705$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000186705 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000186705 9141_ $$y2014
000186705 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142375$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000186705 9132_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000186705 9132_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000186705 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000186705 920__ $$lyes
000186705 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000186705 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
000186705 980__ $$aphd
000186705 980__ $$aVDB
000186705 980__ $$aUNRESTRICTED
000186705 980__ $$aFullTexts
000186705 980__ $$aI:(DE-Juel1)PGI-1-20110106
000186705 980__ $$aI:(DE-Juel1)IAS-1-20090406
000186705 9801_ $$aFullTexts
000186705 981__ $$aI:(DE-Juel1)IAS-1-20090406