000186723 001__ 186723
000186723 005__ 20210129214939.0
000186723 0247_ $$2doi$$a10.1007/s00340-014-5979-7
000186723 0247_ $$2ISSN$$a0946-2171
000186723 0247_ $$2ISSN$$a1432-0649
000186723 0247_ $$2WOS$$aWOS:000348436300010
000186723 037__ $$aFZJ-2015-00793
000186723 082__ $$a530
000186723 1001_ $$0P:(DE-HGF)0$$aAurand, Bastian$$b0$$eCorresponding Author
000186723 245__ $$aReduction of X-ray generation in high-intensity laser ion acceleration
000186723 260__ $$aBerlin$$bSpringer$$c2015
000186723 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1422274689_24681
000186723 3367_ $$2DataCite$$aOutput Types/Journal article
000186723 3367_ $$00$$2EndNote$$aJournal Article
000186723 3367_ $$2BibTeX$$aARTICLE
000186723 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000186723 3367_ $$2DRIVER$$aarticle
000186723 520__ $$aIn this paper, we report on measurements of bremsstrahlung in laser ion acceleration experiments from ultra-thin, polymer-based target foils. The influence of laser polarization on the generated γ radiation, the maximum achievable proton energy and the total proton number is investigated. A clear benefit in terms of γ radiation reduction by the use of circular polarized light can be observed. At the same time, the total number of accelerated protons was increased.
000186723 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000186723 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000186723 7001_ $$0P:(DE-HGF)0$$aKuschel, Stephan$$b1
000186723 7001_ $$0P:(DE-HGF)0$$aRödel, Christian$$b2
000186723 7001_ $$0P:(DE-HGF)0$$aJäckel, Oliver$$b3
000186723 7001_ $$0P:(DE-HGF)0$$aPolz, Jens$$b4
000186723 7001_ $$0P:(DE-HGF)0$$aElkin, Bentsian$$b5
000186723 7001_ $$0P:(DE-HGF)0$$aZhao, Huanyu$$b6
000186723 7001_ $$0P:(DE-HGF)0$$aKarmakar, Anupam$$b7
000186723 7001_ $$0P:(DE-Juel1)132115$$aGibbon, Paul$$b8$$ufzj
000186723 7001_ $$0P:(DE-HGF)0$$aKaluza, Malte C.$$b9
000186723 7001_ $$0P:(DE-HGF)0$$aKuehl, Thomas$$b10
000186723 773__ $$0PERI:(DE-600)1458437-2$$a10.1007/s00340-014-5979-7$$n2$$p247-251$$tApplied physics / B$$v118$$x1432-0649$$y2015
000186723 8564_ $$uhttps://juser.fz-juelich.de/record/186723/files/FZJ-2015-00793.pdf$$yRestricted
000186723 909CO $$ooai:juser.fz-juelich.de:186723$$pVDB
000186723 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132115$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000186723 9130_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000186723 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000186723 9141_ $$y2015
000186723 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000186723 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000186723 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000186723 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000186723 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000186723 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000186723 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000186723 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000186723 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000186723 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000186723 920__ $$lyes
000186723 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000186723 980__ $$ajournal
000186723 980__ $$aVDB
000186723 980__ $$aI:(DE-Juel1)JSC-20090406
000186723 980__ $$aUNRESTRICTED