

HPC Simulation Pre-/Post-processing

Data results need to be analyzed and understood Computed data must be stored and re-located Subsets of data might be referenced in publications Sampling vs. whole 'big data' sets (serial/parallel) Pre-/Post-Processing & visualizations as new data

Data Analysis & Analytics in HPC facing limits & challenges

HPC Simulation & Computational Science

Increasing complexity and granularity: data → ∞

How data is organized has impact on performance

Multi-physics simulations & multi-model ensemble

E.g. physical processes in climate science (land, atmosphere, ocean, sea ice) & observation validation

[7] DOE ASCAC report

Better Prediction Accuracy... ... means 'Bigger Data'

Rank	Site	System	Cores	(TFlopis)	(TFlop/s)	(kW)
0	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IV6-FEP Cluster, Intel Xeon E5-2692 12C 2 200GHz, TH Express-2 Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
Ð	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XX7 , Opteron 6274 16C 2 200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
Ð	DOENNSALLNL United States	Sequola - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890

TOP 500 HPC Systems 11/2013

Estimated figures for simulated 240 second period, 100 hour run-time	TeraShake domain (600x300x80 km^3)	PetaShake domain (800x400x100 km^3)	
Fault system interaction	NO	YES	
Inner Scale	200m	25m	
Resolution of terrain grid	1.8 billion mesh points	2.0 trillion mesh points	
Magnitude of Earthquake	7.7	8.1	
Time steps	20,000 (013 coc/ctop)	160,000 (0015 coc/stop)	
Surface data	1.1 TB	1.2 PB	
Volume data	43 TB	4.9 PB	

'We are unable to store the output data of all computational simulations/users'

Information courtesy of the Southern California

F. Berman: 'Maximising the Potential of Research Data'

Unsolved Questions:

Scale
Heterogeneity
Stewardship
Curation
Long-Term Access and Storage

Research Challenges:

Collection, Trust, Usability
Interoperability, Diversity
Security, Smart Analytics,
Education and training
Data publication and access
Commercial exploitation
New social paradigms
Preservation and sustainability

Breakwaters – Offer Concrete Solutions for Researchers Is there a common set of services often needed by scientists? Research Services needed by some Services common to all **Identified Common Data Services Persistent Identifiers for Research Data Safe Replication of Scientific Data** 'Concrete' **Transfer of Data to/from Computing Simple Sharing of Research Data** Next Steps -> **Metadata Catalogue**

Long-term Data Preservation and Curation...

bears potentials to lower 'Data Waves'

and supports data analytics & analysis

Addressed requirements of the High Level Expert Group on Scientific Data:

- ✓ **High reliability**, so data scientists can count on its availability
- ✓ Open deposit, allowing user-community centres to store data easily
- ✓ **Persistent identification**, allowing data centres to register a huge amount of markers to track the origins and characteristics of the information
- ✓ Metadata support to allow effective management, use and understanding
- ✓ Avoids re-creation of datasets through easy data lookups and re-use
- ✓ Enables easier identification of duplicates to remove them & save storage

[1] HLEG Report

[3] EUDAT Web Page

#	Suggestions for Requirements of a Data Infrastructure				
#	Long description	Short description			
HLR1	Open deposit, allowing user-community centres to store data easily	Simple data storing			
HLR2	Bit-stream preservation, ensuring that data authenticity will be guaranteed for a specified number of years	Bit-stream and long-term preservation			
HLR3	Format and content migration, executing CPU- intensive trans-formations on large data sets at the command of the communities	CPU-intensive transformations on large data sets			
HLR4	Persistent identification, allowing data centres to register a huge amount of markers to track the origins and characteristics of the Information	Persistent identification of research data			
HLR5	Metadata support to allow effective management, use and understanding	Metadata services and harvesting			
HLR6	Maintaining proper access rights as the basis of all trust	Proper access rights			
HLR7	A variety of access and curation services that will vary between scientific disciplines and over time	Data access and curation services			
HLR8	Execution services that allow a large group of researchers to operate on the stored data	Execution services for data analysis			
HLR9	High reliability, so researchers can count on its availability	Reliable services			
HLR10	Regular quality assessment to ensure adherence to all agreements	Quality assessment			
HLR11	Distributed and collaborative authentication, authorisation and accounting	Authentication, authorization & accounting			
HLR12	A high degree of interoperability at format and semantic Level	Interoperability			

Key Approaches:

Bridging National & EU Solutions
Not 'one single data infrastructure'
Federated Network of Trusted Centers

Key Benefits for Scientific Users:

Trust, Sustainability, Interoperability, Diversity, Extensibility (e.g. Belgium?), New Social Paradigms & Sustainability

[1] High Level Expert Group on Scientific Data, 'Riding the Wave', Report to the European Commission, October 2010, Online:

http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/hlg-sdi-report.pdf

[2] Knowledge Exchange Partner, 'A Surfboard for Riding the Wave', November 2012, Online:

http://www.knowledge-exchange.info/surfboard

[3] EUDAT Web page, Online:

http://www.eudat.eu

[4] Fran Berman, 'Maximising the Potential of Research Data', January 2013, Online:

http://rdi2.rutgers.edu/event/rdi2-distinguished-seminar-maximizing-innovation-potential-research-data

[5] The Handle System, Handle.net, Online:

http://www.handle.net/

[6] M. Riedel and P. Wittenburg et al. 'A Data Infrastructure Reference Model with Applications: Towards Realization of a ScienceTube Vision with a Data Replication Service', 2013, Online:

http://www.jisajournal.com/content/4/1/1

[7] DOE ASCAC Data Subcommittee Report, 'Synergistic Challenges in Data-Intensive Science and Exascale Computing', 2013, Online: http://www.sci.utah.edu/publications/chen13/ASCAC Data Intensive Computing report final.pdf

Intersive computing report in

[8] Research Data Alliance (RDA), Big Data Analytics Interest Group, 2014, Online:

https://www.rd-alliance.org/big-data-analytics-wiki-contents

