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Manipulating InAs nanowires with submicrometer precision
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InAs nanowires are grown epitaxially by catalyst-free metal organic vapor phase epitaxy and are
subsequently positioned with a lateral accuracy of less than 1 um using simple adhesion forces be-
tween the nanowires and an indium tip. The technique, requiring only an optical microscope, is used
to place individual nanowires onto the corner of a cleaved-edge wafer as well as across predefined
holes in Si3;Ns membranes. The precision of the method is limited by the stability of the micro-
manipulators and the precision of the optical microscope. © 2011 American Institute of Physics.

[doi:10.1063/1.3657135]

Semiconducting III-V nanowires are of growing inter-
est for nanoelectronic, nano-optical, and nanomechanical
applications'~® and even for topological quantum computing.’
For these more advanced applications like the latter, a high
precision is required for the positioning of nanowires, abso-
lute and relative to each other. However, experimental tech-
niques for this task are scarce. Typically, the nanowires are
distributed randomly on a substrate, e.g., by using a dry clean-
room wipe which mechanically picks up some nanowires. Af-
terwards, the nanowires are partly left on a surface by press-
ing the wipe onto it.'” In another technique, nanowires are re-
moved from the growth substrate by ultrasonication, and the
solution is subsequently drop cast onto a target material.'’-!?
After such deposition procedures, adequate nanowires are
searched for in an electron microscope or an atomic force mi-
croscope. These techniques are neither precise nor scalable.
A more controlled positioning method uses a high frequency
electric field between two contacts within a liquid/nanowire
solution. This aligns some of the wires between the electrodes
before the solvent is vaporized'®'* and results in nanowires
parallel to the electric field. But the success rate is lower
than 50% (Ref. 15) and the method does not allow arbitrary
angles between the nanowire and electrodes. The most ac-
curate method so far uses a nanotweezer inside a scanning
electron microscope (SEM). This technique achieves a pre-
cision down to 10 nm (Ref. 16) and can even grab low di-
ameter objects as multiwall carbon nanotubes.'”'® Another
possibility is to use a tungsten tip inside the SEM, nano-weld
a selected nanowire at the tip by e-beam deposition of plat-
inum, and, subsequently, move the nanowire away from the
growth substrate.'®?° To place the nanowire at the desired po-
sition, it is cut by focussed ion beam irradiation and thereby
released from the tip. Both SEM methods have the draw-
back of being time-consuming and expensive. Moreover, they
can damage or contaminate the nanowire surface. More ele-
gantly, Kjelstrup-Hansen et al. used lithographically prepared
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microcantilevers’! to grip individual nanowires under an opti-
cal microscope using adhesion forces. The nanowires are then
placed onto another cantilever for electrical and electrome-
chanical measurements.? Here, we demonstrate an even sim-
pler method which relies on an In tip shaped under ambi-
ent conditions to pick and place single InAs nanowires with
less than 1 pum precision. This novel technique completely
avoids electron microscopes and electron beam lithogra-
phy and is, thus, easy to implement. It allows picking up
nanowires which are optically visible down to diameters of 20
nm (Ref. 22) with a length down to 2 um and, subsequently,
placing them onto a target substrate with submicrometer
precision.

The setup is shown in Fig. 1. It consists of an optical
bright field microscope®? with a cross table and a temperature-
controlled heater. Two objective lenses leading to hundredfold
and thousandfold magnification are available at working dis-
tances of 17.6 mm and 4.6 mm, respectively. Two microma-
nipulators with a nominal spatial accuracy of 1 um (Ref. 24)
are attached to the base plate of the microscope. The heater
which is used to produce indium tips is fixed on the cross
table.

The preparation of the In tips is similar to their prepa-
ration for In microsoldering:>»?® A sharp etched tungsten tip
similar to those used for scanning tunneling microscopy?’ is
clamped into the tip support of the micromanipulator. A small
piece of In is placed onto a cleaved fragment of a silicon wafer
mounted on the heating plate. The temperature is set to 170 °C
in order to melt In. Then, the tungsten tip is dipped into the
In droplet and removed by shifting the cross table by about
2 mm/s. This results in In tips with several millimeters in
length. Figure 2(a) shows a SEM image of such an In tip
demonstrating the typical radii at the apex of about 150 nm.
The shape of the tip is largely reproducible, but depends on
the droplet temperature and the velocity of the tungsten tip
during removal from the In droplet.

For manipulation, undoped InAs nanowires with diam-
eters of ~100 nm were selectively grown by catalyst-free
metal organic vapor phase epitaxy (MOVPE).?® Preconditions

© 2011 American Institute of Physics
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FIG. 1. (Color online) Setup of the manipulation stage consisting of a com-
mercial optical microscope (Leica DM 2500 MH), two (x, y, z) micromanip-
ulators (Thorlabs), and a heating stage mounted onto a cross table.

for manipulation within the optical microscope are nanowires
with a length of more than 2 um and a relative distance on the
growth substrate of more than 500 nm. In general, it is easier
to lift longer nanowires with larger relative distances.

To remove individual wires, the In tip is first placed
next to a wire as shown in the optical microscope image of
Fig. 2(b). The wires, which stand perpendicular to the surface,
appear as black dots. Next, the In tip is pushed against the
wire, such that the wire breaks somewhere between the con-
tact point of the In tip and the substrate. The broken nanowires
either directly stick to the In tip, or mostly, jump several um
away. However, in more than 80% of these cases, the wires
are tilted with respect to the substrate with only a small con-
tact area between the wire and the substrate. The wire can
now easily be picked up by gently touching it with the In tip
which provides larger contact area with the wire than the sub-
strate and, thus, larger adhesion forces. Then the nanowire is
aligned with the focus plane of the microscope by rotation of
the In tip and, thus, becomes sharply visible (Fig. 2(c)).

In order to place the wire onto a substrate, the In tip is
approached step by step towards the desired position. The

FIG. 2. (Color online) (a) SEM image of the end of an In tip (apex ra-
dius » &~ 180 nm). (b) Optical image of an In tip approached to a field of
InAs nanowires with 1 um pitch; the nanowire to be captured is marked
by an arrow. (c) Same nanowire at the In tip after the pick-up procedure.
(d) Nanowire of length / &~ 15 pum placed onto the corner of a cleaved
GaAs wafer and contacted twice by In microsoldering®>?¢ (enhanced on-
line). [URL: http://dx.doi.org/10.1063/1.3657135.1]
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FIG. 3. SEM image of InAs nanowires placed on top of Pt contacts; averaged
accuracy: (Ax, Ay) = (0.6, 0.9) um lateral, Ae = 9° angular.

substrate can be rotated for the sake of alignment of the wire
with a predefined structure on the surface. To achieve highest
accuracy in positioning, the focus plane of the microscope
has to be switched back and forth between the substrate
and the approaching In tip. As soon as the nanowire touches
the surface, it permanently sticks to that position because of
the larger contact area between the wire and the substrate
than between the wire and the In tip. Thus, lateral and
rotational alignment has to be achieved prior to touching the
surface. Typically, the whole procedure to pick up and place
a nanowire lasts about 5-10 min being slightly longer for
very short wires.

Figure 2(d) shows a wire placed onto the corner of a
GaAs wafer, cleaved twice in perpendicular directions in or-
der to provide a sharp corner. Subsequently, two In contacts
are microsoldered to the wire?>>2% under the same optical mi-
croscope. Such an arrangement can be used, e.g., as a tip for
scanning tunneling microscopy, where it might be helpful to
have conductive tips with an increased screening length, in or-
der to probe long-range electron-electron interaction effects.?’
Importantly, the whole preparation requires only an optical
microscope, standard micromanipulators, and a heating stage
and is, thus, very easy to implement.

In order to determine lateral and angular accuracy of the
method, a Si/SiO,-wafer has been structured with a number
of pairs of Pt contacts, 35 nm in height. The two contacts of
a pair have a distance of 750 nm and the contact areas are
(1 x 1) wm? and (2 x 2) um?. Figure 3 shows a SEM image
of nanowires which are placed as accurately as possible on the
center of a pair of contacts. Notice that all wires touch both
contacts. The lateral accuracy in x and y direction turns out to
be, on average, 0.6 um and 0.9 pm, respectively. The angular
accuracy was 9° on average.

Besides production of nanowire STM tips (Fig. 2(d)),
we use the method to construct suspended nanowire de-
vices by placing the wires across holes of a perforated
Si3N; membrane.?® The suspended nanowires are contacted
with Ti/Au electrodes defined by electron beam lithogra-
phy. This allows, e.g., inspection of the contacted wire by
transmission electron microscopy or bending of the wire by
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FIG. 4. (Color online) (a) SEM image of an InAs nanowire positioned across
a hole within a Si3zN4 membrane. The wire is contacted by four Ti/Au elec-
trodes. (b) Magnetoresistance of this nanowire recorded by a four-terminal
measurement at different temperatures as indicated.

applied electrostatic forces during transport measurements.
Figure 4(a) shows a SEM image of a suspended, slightly
n-doped InAs nanowire with four Ti/Au contacts. The wire
is grown by catalyst-free MOVPE.?® The partial pressure ra-
tio between Si;Hg and TMIn was 7.5 x 1073 in order to dope
the wire. Wires from the same growth procedure were trans-
ferred to a Si/SiO, wafer and contacted for field-effect mea-
surements. This revealed a mobility of roughly 1000 cm?/Vs
and a carrier concentration of 2 x 10'® cm™ which is typi-
cal for InAs nanowires.®3!:32 The four-terminal magnetocon-
ductance measurements of the suspended wire are performed
by a lock-in amplifier providing an ac current signal to the
outer contacts with an amplitude of 5 nA and a frequency of
17.3 Hz. The voltage drop across the inner contacts is mea-
sured. Figure 4(b) shows the resulting, reproducible univer-
sal resistance fluctuations of the wire for three different tem-
peratures. The average resistivity of the wire turns out to be
p =44 x 107> Qm very similar to p = 3.1 x 107> Qm
found for the corresponding InAs nanowires on Si/SiO, for
the same growth run. The resistance fluctuations of 10% are
also similar to previous experiments on InAs nanowires.334
More detailed results using this sample will be published
in Ref. 35.

Further future applications of this novel method might in-
clude placing nanowires at specific positions for easier local-
ization with a scanning probe microscope or the construction
of geometrical networks of nanowires as, e.g., T-junctions,
which are proposed for exchange operations of Majorana
fermions.’

In summary, we have demonstrated an easy to implement
method to place single nanowires onto desired positions with
a lateral accuracy below 1 um and an angular accuracy of 9°.
The method requires only an optical microscope, a microma-
nipulator, and a heating stage providing 170 °C.

We thank Eva Maynicke, Onder Giil, Martin Raux, and
Christian Blomers for technical assistance and acknowledge
financial support by the excellence initiative of the German
federal government.
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