000187133 001__ 187133
000187133 005__ 20210129214941.0
000187133 0247_ $$2doi$$a10.1002/2014WR015608
000187133 0247_ $$2ISSN$$a0043-1397
000187133 0247_ $$2ISSN$$a0148-0227
000187133 0247_ $$2ISSN$$a1944-7973
000187133 0247_ $$2WOS$$aWOS:000346654600028
000187133 0247_ $$2Handle$$a2128/17090
000187133 0247_ $$2altmetric$$aaltmetric:2805053
000187133 037__ $$aFZJ-2015-00807
000187133 082__ $$a550
000187133 1001_ $$0P:(DE-HGF)0$$aCouvreur, V.$$b0$$eCorresponding Author
000187133 245__ $$aDynamic aspects of soil water availability for isohydric plants: Focus on root hydraulic resistances
000187133 260__ $$aWashington, DC$$bAGU$$c2014
000187133 3367_ $$2DRIVER$$aarticle
000187133 3367_ $$2DataCite$$aOutput Types/Journal article
000187133 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1422265397_24686
000187133 3367_ $$2BibTeX$$aARTICLE
000187133 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000187133 3367_ $$00$$2EndNote$$aJournal Article
000187133 520__ $$aSoil water availability for plant transpiration is a key concept in agronomy. The objective of this study is to revisit this concept and discuss how it may be affected by processes locally influencing root hydraulic properties. A physical limitation to soil water availability in terms of maximal flow rate available to plant leaves ( inline image) is defined. It is expressed for isohydric plants, in terms of plant-centered variables and properties (the equivalent soil water potential sensed by the plant, inline image; the root system equivalent conductance, inline image; and a threshold leaf water potential, inline image). The resulting limitation to plant transpiration is compared to commonly used empirical stress functions. Similarities suggest that the slope of empirical functions might correspond to the ratio of inline image to the plant potential transpiration rate. The sensitivity of inline image to local changes of root hydraulic conductances in response to soil matric potential is investigated using model simulations. A decrease of radial conductances when the soil dries induces earlier water stress, but allows maintaining higher night plant water potentials and higher inline image during the last week of a simulated 1 month drought. In opposition, an increase of radial conductances during soil drying provokes an increase of hydraulic redistribution and inline image at short term. This study offers a first insight on the effect of dynamic local root hydraulic properties on soil water availability. By better understanding complex interactions between hydraulic processes involved in soil-plant hydrodynamics, better prospects on how root hydraulic traits mitigate plant water stress might be achieved.
000187133 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000187133 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000187133 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000187133 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, J.$$b1$$ufzj
000187133 7001_ $$0P:(DE-HGF)0$$aDraye, X.$$b2
000187133 7001_ $$0P:(DE-Juel1)129477$$aJavaux, M.$$b3$$ufzj
000187133 773__ $$0PERI:(DE-600)2029553-4$$a10.1002/2014WR015608$$gVol. 50, no. 11, p. 8891 - 8906$$n11$$p8891 - 8906$$tWater resources research$$v50$$x0043-1397$$y2014
000187133 8564_ $$uhttps://juser.fz-juelich.de/record/187133/files/FZJ-2015-00807.pdf$$yOpenAccess
000187133 909CO $$ooai:juser.fz-juelich.de:187133$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000187133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000187133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129477$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000187133 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000187133 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000187133 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000187133 9141_ $$y2014
000187133 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000187133 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000187133 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000187133 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000187133 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000187133 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000187133 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000187133 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000187133 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000187133 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000187133 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000187133 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000187133 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000187133 980__ $$ajournal
000187133 980__ $$aVDB
000187133 980__ $$aUNRESTRICTED
000187133 980__ $$aI:(DE-Juel1)IBG-3-20101118
000187133 9801_ $$aFullTexts