000187134 001__ 187134 000187134 005__ 20210129214941.0 000187134 0247_ $$2doi$$a10.1007/s00723-014-0599-2 000187134 0247_ $$2ISSN$$a0937-9347 000187134 0247_ $$2ISSN$$a1613-7507 000187134 0247_ $$2WOS$$aWOS:000344058800012 000187134 037__ $$aFZJ-2015-00808 000187134 082__ $$a530 000187134 1001_ $$0P:(DE-Juel1)129464$$aHaber-Pohlmeier, S.$$b0$$eCorresponding Author$$ufzj 000187134 245__ $$aNMR Fast Field Cycling Relaxometry of Unsaturated Soils 000187134 260__ $$aWien [u.a.]$$bSpringer$$c2014 000187134 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1422265568_24682 000187134 3367_ $$2DataCite$$aOutput Types/Journal article 000187134 3367_ $$00$$2EndNote$$aJournal Article 000187134 3367_ $$2BibTeX$$aARTICLE 000187134 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000187134 3367_ $$2DRIVER$$aarticle 000187134 520__ $$aThe bioavailability of water for plant nutrition in natural soils is controlled by the pore system structure and the interaction of water with the pore walls at variable degrees of saturation. For the characterization of these processes T 1 relaxometry is particularly suitable because it is not influenced by internal gradients and the frequency dependence of T 1 includes detailed information about the local dynamics at the pore walls. Using Fast Field Cycling Relaxometry, we have determined T 1 relaxation dispersion curves of unsaturated soil materials which cover a broad range of textures between pure sand and silt-loam. The mean relaxation rates scale inversely with the water content, as expected according to the Brownstein–Tarr model, which means that the effective pore volume is the only water-contributing fraction. By further analysis of the relaxation dispersion curves we find a bi-logarithmic behavior which is describable by a model of two-dimensional diffusion at the liquid–solid interface in the neighborhood of paramagnetic impurities at the surface. The microscopic wettability, as expressed by the ratio of surface residence time and correlation time, is identical for the soil material but decreases by a factor of two for the sand. This relaxation mechanism is unique for all textures and water contents and proves that the water mobility at the surface does not decrease even at the lowest water contents. 000187134 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0 000187134 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1 000187134 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000187134 7001_ $$0P:(DE-HGF)0$$aStapf, S.$$b1 000187134 7001_ $$0P:(DE-Juel1)129521$$aPohlmeier, A.$$b2$$ufzj 000187134 773__ $$0PERI:(DE-600)1480644-7$$a10.1007/s00723-014-0599-2$$gVol. 45, no. 10, p. 1099 - 1115$$n10$$p1099 - 1115$$tApplied magnetic resonance$$v45$$x1613-7507$$y2014 000187134 8564_ $$uhttps://juser.fz-juelich.de/record/187134/files/FZJ-2015-00808.pdf$$yRestricted 000187134 909CO $$ooai:juser.fz-juelich.de:187134$$pVDB:Earth_Environment$$pVDB 000187134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129464$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000187134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129521$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000187134 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0 000187134 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0 000187134 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1 000187134 9141_ $$y2014 000187134 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000187134 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000187134 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000187134 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000187134 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000187134 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000187134 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000187134 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000187134 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000187134 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000187134 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0 000187134 980__ $$ajournal 000187134 980__ $$aVDB 000187134 980__ $$aI:(DE-Juel1)IBG-3-20101118 000187134 980__ $$aUNRESTRICTED