001     187134
005     20210129214941.0
024 7 _ |a 10.1007/s00723-014-0599-2
|2 doi
024 7 _ |a 0937-9347
|2 ISSN
024 7 _ |a 1613-7507
|2 ISSN
024 7 _ |a WOS:000344058800012
|2 WOS
037 _ _ |a FZJ-2015-00808
082 _ _ |a 530
100 1 _ |a Haber-Pohlmeier, S.
|0 P:(DE-Juel1)129464
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a NMR Fast Field Cycling Relaxometry of Unsaturated Soils
260 _ _ |a Wien [u.a.]
|c 2014
|b Springer
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1422265568_24682
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The bioavailability of water for plant nutrition in natural soils is controlled by the pore system structure and the interaction of water with the pore walls at variable degrees of saturation. For the characterization of these processes T 1 relaxometry is particularly suitable because it is not influenced by internal gradients and the frequency dependence of T 1 includes detailed information about the local dynamics at the pore walls. Using Fast Field Cycling Relaxometry, we have determined T 1 relaxation dispersion curves of unsaturated soil materials which cover a broad range of textures between pure sand and silt-loam. The mean relaxation rates scale inversely with the water content, as expected according to the Brownstein–Tarr model, which means that the effective pore volume is the only water-contributing fraction. By further analysis of the relaxation dispersion curves we find a bi-logarithmic behavior which is describable by a model of two-dimensional diffusion at the liquid–solid interface in the neighborhood of paramagnetic impurities at the surface. The microscopic wettability, as expressed by the ratio of surface residence time and correlation time, is identical for the soil material but decreases by a factor of two for the sand. This relaxation mechanism is unique for all textures and water contents and proves that the water mobility at the surface does not decrease even at the lowest water contents.
536 _ _ |a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|0 G:(DE-HGF)POF2-246
|c POF2-246
|f POF II
|x 0
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Stapf, S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pohlmeier, A.
|0 P:(DE-Juel1)129521
|b 2
|u fzj
773 _ _ |a 10.1007/s00723-014-0599-2
|g Vol. 45, no. 10, p. 1099 - 1115
|0 PERI:(DE-600)1480644-7
|n 10
|p 1099 - 1115
|t Applied magnetic resonance
|v 45
|y 2014
|x 1613-7507
856 4 _ |u https://juser.fz-juelich.de/record/187134/files/FZJ-2015-00808.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:187134
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129464
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129521
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21