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Two-qubit pulse gate for the three-electron double quantum dot qubit
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The three-electron configuration of gate-defined double quantum dots encodes a promising qubit for quantum
information processing. I propose a two-qubit entangling gate using a pulse-gated manipulation procedure.
The requirements for high-fidelity entangling operations are equivalent to the requirements for the pulse-gated
single-qubit manipulations that have been successfully realized for Si QDs. This two-qubit gate completes the
universal set of all-pulse-gated operations for the three-electron double-dot qubit and paves the way for a scalable
setup to achieve quantum computation.
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I. INTRODUCTION

The name hybrid qubit (HQ) was coined for the qubit
encoded in a three-electron configuration on a gate-defined
double quantum dot (DQD) [1,2]. The HQ is a spin qubit
in its idle configuration, but it is a charge qubit during
the manipulation procedure. Recently, impressive progress
was made for the single-qubit control of a HQ in Si [3,4].
It was argued that single-qubit gates were implemented,
whose fidelities exceed 85% for X rotations and 94% for Z
rotations [4]. These manipulations rely on the transfer of one
electron between quantum dots (QDs) [2–4]. Subnanosecond
gate pulses were successfully applied to transfer the third
electron between singly occupied QDs.

Reference [1] suggested two-qubit gates between HQs
with similar methods to those for three-electron spin qubits
that are defined at three QDs [5,6]. The coupling strength
between neighboring QDs is tuned in a multistep sequence,
while this entangling gate for HQs requires control over the
spin-dependent tunnel couplings. A more realistic approach to
realize two-qubit entangling gates for HQs uses electrostatic
couplings between the HQs [2]. If the charge configuration
of one HQ is changed, then Coulomb interactions modify
the electric field at the position of the other HQ. Note the
equivalent construction for a controlled phase gate (CPHASE)
for singlet-triplet qubits in two-electron DQDs [7].

Using Coulomb interactions for entangling operations can
be critical. Even though electrostatic couplings are long-
ranged, they are generally weak and they are strongly disturbed
by charge noise [8]. I propose an alternative two-qubit gate.
Two HQs in close proximity enable the transfer of electrons.
The two-qubit gate that is constructed works similarly to
the pulse-gated single-qubit manipulations. It requires fast
control of the charge configurations on the four QDs through
subnanosecond pulse times at gates close to the QDs. A
two-qubit manipulation scheme of the same principle as for
the single-qubit gates is highly promising because single-qubit
pulse gates have been implemented with great success [3,4].

The central requirement of the entangling operation is the
tuning of one two-qubit state to a degeneracy point with
one leakage state (called |E〉). The qubit states are |1〉 and
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|0〉, while the subscripts L and R describe the physical
positions of the HQs. Specifically, when the state |0L0R〉 is
degenerate with |E〉 then |0L0R〉 can pick up a nontrivial
phase, while all the other two-qubit states evolve trivially.
Note that a similar construction for an entangling operation [9]
has been implemented with impressive fidelities [10–12] for
superconducting qubits. The couplings to other leakage states
must be avoided during the operation. I propose a two-step
procedure. First, |1L1R〉 and |0L1R〉 are tuned away from the
initial charge configuration to protect these states from leakage.
|1L0R〉 and |0L0R〉 remain unchanged at the same time. One has
then reached the readout regime of the second HQ. The second
part of the tuning procedure corrects the passage of |1L0R〉
through the anticrossing with |E〉, at a point where |1L0R〉
is degenerate with another leakage state (called |L〉). I call
this anticrossing degenerate Landau-Zener crossing (DLZC)
because the passage through this anticrossing is described by
a generalization of the Landau-Zener model [13,14].

I focus on pulse-gated entangling operations for HQs in
gate-defined Si QDs. Even though the entangling operation
is not specifically related to the material and the qubit design,
gate-defined Si QDs are the first candidate where the two-qubit
pulse gate might be implemented because Si QDs were used for
single-qubit pulse gates [3,4]. I discuss therefore specifically
the noise sources that are dominant for experiments involving
gate-defined Si QDs. The described two-qubit pulse gates
can be directly implemented with the existing methods of
the single-qubit pulse gates. It will turn out that high-fidelity
two-qubit entangling operations require low charge noise.

The organization of this paper is as follows. Section II
introduces the model to describe a pair of three-electron DQDs.
Section III constructs the two-qubit gate. Section IV discusses
the noise properties of the entangling operation, and Sec. V
summarizes all the results.

II. SETUP

I consider an array of four QDs, which are labeled by
QD1–QD4 (see Fig. 1). One qubit is encoded using a three-
electron configuration on two QDs. QD1 and QD2 encode
HQL, and QD3 and QD4 encode HQR . The system is described
by a Hubbard model, which includes two orbital states at each
QD. The transfer of electrons between neighboring QDs is
possible but weak, unless the system is biased using electric

1098-0121/2015/91(3)/035430(7) 035430-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.035430


SEBASTIAN MEHL PHYSICAL REVIEW B 91, 035430 (2015)

FIG. 1. (Color online) Array of QDs that is used to define and
couple HQs. The four red QDs encode two HQs, and they are labeled
by HQL and HQR . Black dots represent electrons. The charge config-
urations are labeled by the electron numbers (nQD1 ,nQD2 ,nQD3 ,nQD4 ).
(1,2,1,2) is the idle configuration. Applying voltages to gates close to
the QDs provides universal single-qubit control and realizes a CPHASE

gate by the transfer of single electrons between the QDs. The gate
protocols to achieve quantum computation are described in the text.
The encoding scheme can be scaled up trivially, as shown by the blue
QDs.

gates. It might be desirable to apply a large global magnetic
field, which separates states of different sz energetically.
Generally, such a global magnetic field is not needed for
the pulse-gated entangling operation because the electron
transfer between QDs is spin conserving for weak spin-orbit
interactions (as for all Si heterostructures). Also nuclear spin
noise only introduces a very small spin-flip probability [15].
Nevertheless, a global magnetic field still reduces the influence
of the remaining nuclear spin noise.

The S = 1
2 , sz = 1

2 spin subspace of three electrons is two
dimensional, and it encodes a qubit [5]. The single-qubit states

for HQL are |1L〉 =
√

2
3 |↓T+〉 −

√
1
3 |↑T0〉 and |0L〉 = |↑S〉.

The first entry in the state notation labels electrons at QD1,
and the second entry labels electrons at QD2. QD1 is singly
occupied, but two electrons are paired at QD2. |S〉 = c

†
i↑c

†
i↓|0〉

is the two-electron singlet state at QDi , |T+〉 = c
†
i↑c

†
ī↑|0〉,

|T0〉 = 1√
2
(c†i↑c

†
ī↓ + c

†
i↓c

†
ī↑)|0〉, and |T−〉 = c

†
i↓c

†
ī↓|0〉 are triplet

states at QDi . c
(†)
iσ is the (creation) annihilation operator of one

electron in state |i〉 of QDi with spin σ , |i〉 and |ī〉 are the
ground state and the first excited state at QDi [16], and |0〉 is
the vacuum state. Similar considerations hold for HQR , where
QD3 is singly occupied and QD4 is filled with two electrons.
It is assumed that a two-electron triplet at QD1 or at QD3 is
strongly unfavored compared to a two-electron triplet at QD2

or at QD4. These conditions were fulfilled for the HQs in
Refs. [3,4].

The energy E0 = 0 is assigned to |0L0R〉 in (1,2,1,2).
|1L0R〉, |0L1R〉, and |1L1R〉 are higher in energy by �L, �R ,
and �L + �R . The excited states |1L〉 and |1R〉 involve a triplet
on a doubly occupied QD that is higher in energy than the
singlet configurations of |0L〉 and |0R〉. Single-qubit gates are
not the focus of this work, but I briefly review: all single-qubit
gates are applicable through evolutions under σL

x , σL
z , σR

x ,
and σR

z . σx = |1〉〈0| + |0〉〈1| and σz = |1〉〈1| − |0〉〈0| are the
Pauli operators on the corresponding qubit subspace. They are
applied by transferring one electron from QD2 to QD1 for
HQL (and QD4 to QD3 for HQR). Depending on the pulse
profile, pure phase evolutions (described by the operators σL

z

and σR
z ) or spin flips (described by the operators σL

x and σR
x )

are created [2–4].

III. TWO-QUBIT PULSE GATE

Two-qubit operations are constructed using the transfer
of electrons between neighboring QDs. The charge transfer
between (1,2,1,2) and (1,2,2,1) is described by H34 =
τ1

∑
σ∈{↑,↓}(c

†
3σ c4σ + H.c.) + τ2

∑
σ∈{↑,↓}(c

†
3σ c4̄σ + H.c.),

where τ1, τ2 are tunnel couplings between states from
neighboring QDs, and H.c. labels the Hermitian conjugate
of the preceding term. ε43 = eV4 − eV3 describes the transfer
of electrons through voltages applied at gates close to
QD3 and QD4. Lowering the potential at QD3 compared
to QD4 favors (1,2,2,1) (ε43 > 0), but (1,2,1,2) is favored
for the opposite case (ε43 < 0). (1,2,1,2) and (1,2,2,1) have
identical energies at ε43 = �43 > �L,�R . Similar consid-
erations hold for the manipulation between (1,2,1,2) and
(1,1,2,2), which is described by ε23 = eV2 − eV3 and H23 =
τ3

∑
σ∈{↑,↓}(c

†
2σ c3σ + H.c.) + τ4

∑
σ∈{↑,↓}(c

†
2̄σ

c3σ + H.c.).
(1,2,1,2) and (1,1,2,2) have identical energies at ε23 = �23 >

�L,�R .
Note that electrostatic couplings between the states of

different charge configurations are neglected in this discus-
sion. Reference [2] argued that the Coulomb interaction can
introduce energy shifts of � 0.1 μeV, reaching the magnitudes
of the orbital energies (typically 0.1–10 μeV). Coulomb
interactions modify the state energies of different charge
configurations [we consider only (1,2,1,2), (1,2,2,1), and
(1,1,2,2)]. These modifications do not influence the operation
principle of the entangling gate because only a two-qubit
system with a state degeneracy with one leakage state is
required. The Coulomb interactions can be introduced by a
shift of the positions of the state degeneracies between different
charge configurations.

One can construct an entangling operation in a two-step
manipulation procedure, which is shown in Fig. 2. In the first
step, ε43 is modified, and the charge configuration is pulsed
from (1,2,1,2) towards (1,2,2,1). Only |1R〉 is transferred
to |B〉 = |(S ↑)R〉 because |1R〉 is energetically unfavored
compared to |0R〉, which remains in (1,2). The tuning uses
a rapid pulse to ε43 = �43 − �R . H34 couples |1R〉 and |B〉 by√

3
2τ2. The occupations of |1R〉 and |B〉 swap after the waiting

time t1 = h

2
√

6τ2
. Afterwards, ε43 is pulsed to ε43 = ε∗

43, which
is far away from all the anticrossings. |B〉 and |0R〉 have the
energy difference �∗

R at ε43 = ε∗
43. Note that ε43 = ε∗

43 is in the
readout regime of HQR: |1R〉 is in (2,1), but |0R〉 is in (1,2).

In the second step, gate pulses modify ε23 at fixed ε43 = ε∗
43.

The charge configuration is pulsed towards (1,1,2,2). States
in (1,2,2,1) remain unchanged because they need the transfer
of two electrons to reach (1,1,2,2). The states

|L〉 =
[√

1

6
|↑T0↑〉 −

√
3

2
|↑T+↓〉 + 1

2
√

3
|↓T+↑〉

]
|S〉, (1)

|β〉 = 1
2 [

√
2|↑T0↑〉 + |↑T+↓〉 + |↓T+↑〉]|S〉, (2)

are introduced. |E〉 = |↑↑SS〉 is the ground state in (1,1,2,2)
with sz = 1. H23 couples |0L0R〉, |1L0R〉, |L〉, and |E〉,
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FIG. 2. (Color online) Energy diagram of two coupled HQs with
sz = 1 in (1,2,1,2), (1,2,2,1), and (1,1,2,2). The red and the
orange lines describe computational basis, and the black lines
are leakage states. (1,2,1,2) is favored without external bias. (a)
shows the pulsing towards (1,2,2,1), which is modeled through
ε43 = eV4 − eV3 describing the potentials at QD3 and QD4. The
states |1L1R〉 and |1LB〉 as well as |0L1R〉 and |0LB〉 are swapped
at ε43 = �43 − �R . Two of the four state combinations from the
computational basis remain in (1,2,1,2) at ε43 = ε∗

43. (b) shows
the second step of the manipulation. ε23 = eV2 − eV3 models the
potentials at QD2 and QD3. As a consequence, only |1L0R〉 and |0L0R〉
can be tuned to (1,1,2,2), but |1LB〉 and |0LB〉 remain in (1,2,2,1).
The nontrivial part of the entangling gate is a π -phase evolution
of |0L0R〉 at ε23 = �23. |1L0R〉 is degenerate with |L〉 and passes
through a DLZC at ε23 = �23 − �L. Leakage from the computational
subspace is prevented by the pulse cycle that involves waiting times
at ε23 = �23 − �L and at ε23 = ε∗

23 (see description in the text).
The setup is brought back to the initial configuration in the end,
by first changing ε23 and then changing ε43. Perfect state crossings
are marked, where transitions are forbidden from spin-selection rules
(blue), or from charge-selection rules (purple). The waiting times t1,
t2, tw , and tπ are given in the text.

while |β〉 is decoupled. When approaching (1,1,2,2), first
the anticrossing of |1L0R〉, |L〉, and |E〉 is reached at ε23 =
�23 − �L:

H23(ε23) ≈

⎛
⎜⎝

�L 0 τ4√
6

0 �L − 2τ4√
3

τ4√
6

− 2τ4√
3

�23 − ε23

⎞
⎟⎠ . (3)

|0L0R〉 hybridizes with |E〉 only at ε23 = �23. |E〉 has lower
energy than |1L0R〉 at ε23 = ε∗

23, but |V 0L0R〉 is still the ground
state.

The passage through the anticrossing at ε23 = �23 − �L

is critical for the construction of the entangling operation.

H23 describes within the subspace {|1L0R〉,|L〉,|E〉} a DLZC
[see Eq. (3)]. A basis transformation partially diagonalizes
Eq. (3): |T1〉 = 1

3 |1L0R〉 − 2
√

2
3 |L〉 and |E〉 have the overlap√

3/2τ4, but |T2〉 = 2
√

2
3 |1L0R〉 + 1

3 |L〉 is decoupled. |T1〉 and
|E〉 swap at ε23 = �23 − �L after t2 = h

2
√

6τ4
. One introduces

the waiting time tw at ε23 = ε∗
23, where |E〉 has the energy

�L/2. tw must compensate after the full cycle the relative phase
evolution between |T1〉 and |T2〉; as a consequence, |1L0R〉 does
not leak to |L〉. Simple mathematics shows that this is the case
for tw = h( 2n

�L
− 1

τ3
) > 0 with n ∈ N.

The time evolution at ε23 = �23 constructs the central part
of the entangling gate. H23 couples |0L0R〉 and |E〉 by τ3. The
states of the subspace {|0L0R〉,|E〉} pick up a π -phase factor
after the waiting time tπ = h

2τ3
: e−iπσx = −1. All other states

of the computational basis evolve trivially with the energies
�L, �∗

R , and �L + �∗
R . Finally the setup is tuned back to

the initial configuration, involving swaps at ε23 = �23 − �L

and ε43 = �43 − �R that are generated after the waiting times
t2 = h

2
√

6τ4
and t1 = h

2
√

6τ2
.

In total, the described pulse cycle realizes a CPHASE gate in
the basis |1L1R〉, |1L0R〉, |0L1R〉, and |0L0R〉 when permitting
additional single-qubit phase gates:

Uε43=�43−�R
(t1)Uε23=�23−�L

(t2)Uε23=�23 (tπ )

×Uε23=ε∗
23

(tw)Uε23=�23−�L
(t2)Uε43=�43−�R

(t1)

= e
iπ(p1+p2)

2 Z
− p1

4
L Z

− p2
4

R CPHASE, (4)

with Z
φ

i = e−i2πσ i
z φ , p1 = �∗

R( 1
τ3

− 2
√

2/3
τ4

− 4n
�L

), and p2 =
�L( 1

τ3
− 2

√
2/3

τ4
). Uε(t) describes the time evolution at ε for

the waiting time t . One has constructed a phase shift on
HQR conditioned on the state of HQL. Table I summarizes
the manipulation steps of the CPHASE gate.

IV. GATE PERFORMANCE AND NOISE PROPERTIES

In general, two-qubit pulse gates are fast. The only time-
consuming parts of the entangling gate are the waiting times at
ε43 = �43 − �R , ε23 = �23 − �L, ε23 = ε∗

23, and ε23 = �23.
The overall gate time is on the order of O( h

τ2
, h
τ3

, h
τ4

). It was
shown that tunnel couplings between QDs of a DQD in Si
reach 3 μeV [17,18]. Two DQDs might be some distance apart
from each other; nevertheless, μeV tunnel couplings seem
possible. An entangling gate will take only a few nanoseconds
but requires subnanosecond pulses.

The setup provides a rich variety of leakage states.
Appendix B introduces an extended state basis in sz = 1. I
consider the charge configurations (1,2,1,2), (1,2,2,1), and
(1,1,2,2), while I neglect doubly occupied triplets at QD1
and QD3 (see Sec. II). The tunnel couplings are only relevant
around state degeneracies in the gate construction, which is
justified for vanishing τi , i = 1, . . . ,4, compared to �L and
�R . In reality, τi are small compared to �L and �R , but they
are not negligible. As a consequence, modifications from the
anticrossings partially lift the neighboring state crossings (see
the blue and purple circles in Fig. 2) and modify the energy
levels and anticrossings. Figure 3 shows that high-fidelity gates
can be constructed that only have small leakage, when the
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TABLE I. Summary of the state evolution that generates the CPHASE gate, as described in the text [cf. Eq. (4)]. All phase evolutions that
can be corrected with single-qubit gates are neglected. (1) The states |1R〉 and |B〉 interchange. (2) The transfer through a DLZC mixes the
state |1L0R〉 to the subspace {|1L0R〉,|L〉,|E〉}. (3) The central part of the entangling operation introduces a nontrivial phase factor to |0L0R〉.
(4) The content in {|1L0R〉,|L〉,|E〉} is brought back to |1L0R〉 using the appropriate pulse shape. (5) |B〉 and |1R〉 interchange.

|1L1R〉 |1LB〉 |1LB〉 |1LB〉 |1LB〉 |1L1R〉
|1L0R〉 (1)−→ |1L0R〉 (2)−→ {|1L0R〉,|L〉,|E〉} (3)−→ {|1L0R〉,|L〉,|E〉} (4)−→ |1L0R〉 (5)−→ |1L0R〉
|0L1R〉 |0LB〉 |0LB〉 |0LB〉 |0LB〉 |0L1R〉
|0L0R〉 |0L0R〉 |0L0R〉 −|0L0R〉 −|0L0R〉 −|0L0R〉

waiting times and the waiting positions introduced earlier
are adjusted numerically. Small leakage errors and minor
deviations from a CPHASE gate are reached for τi/�L,R < 5%,
i = 1, . . . ,4. I use �/h = �L/h = �R/h = 15 GHz and
τ/h = τi/h = 0.5 GHz, i = 1, . . . ,4 in the following noise
analysis (see Ref. [19] for a similar noise discussion).

A. Charge noise

Charge traps of the heterostructure introduce low-frequency
electric field fluctuations [21,22]. Their influence is weak
for spin qubits, but it increases for charge qubits [23,24].
Consequently, HQs are protected from charge noise only
in the idle configuration. Charge noise is modeled by a
low-frequency energy fluctuation between different charge
configurations. I introduce no fluctuations during one gate
simulation, but use modifications between successive runs.
The fluctuations follow a Gaussian probability distribution of
rms δε. Note that the numerically optimized gate sequence of
Eq. (4) is simulated.

Figure 4 shows the gate fidelity F , which is defined in
Appendix A, while δε is varied. F decreases rapidly with δε.
A Gaussian decay is seen for small δε. The decay constant
shows that τ is the relevant energy scale of the entangling
gate. The coherence is lost if δε increases beyond τ because
a typical gate misses the anticrossings of Fig. 2. Noisy gate
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FIG. 3. (Color online) Numerically optimized gate sequences
according to Eq. (4) for � = �L = �R and τ = τi , i = 1, . . . ,4.
The deviations of the Makhlin invariants [20] from G1 = 0 and
G2 = 1 and the leakage errors PLeak are numerically minimized by
adjusting the waiting times and waiting positions. PLeak = |UPQ|2 is
the transition probability from the computational subspace P to the
leakage subspace Q. The points describe single numerical results; the
solid lines are a polynomial fit. Note that small τ/� permit better
gates.

sequences keep only the diagonal entries of the density matrix,
but they remove all off-diagonal entries leading to F = 0.25.

Charge noise can be modeled for QD spin qubits to cause
energy fluctuations of δε ≈ μeV (1 μeV/h ≈ 0.2 GHz). Both
for GaA charge qubits [21] and Si charge qubits [25], current
experiments suggest charge noise on the order of a few μeV.
For high-fidelity pulse-gated entangling operations, δε must
be smaller than τ that reaches typically a few μeV in Si HQs.

B. Hyperfine interactions

Nuclear spins couple to HQs, and they cause low-frequency
magnetic field fluctuations [26,27]. The error analysis can
be restricted to the total sz = 1 subspace when the global
magnetic fields Ez are larger than the uncertainties in the
magnetic field δEz at every QD. Already global magnetic fields
of 100 mT are much larger than the typical δEz for Si QDs
(Ez/h > 3 GHz (>100 mT) and δEz/h < 3 MHz (<100 μT)
for Si QDs [28,29]). I simulate the numerically optimized pulse
sequence of Eq. (4) under magnetic field fluctuations. The
variations of the magnetic fields at every QD are determined

e�	
Τ
k ΔΕ 


2

, k	5.1

e��
Τ

k ΔEz
�2, k	8.8

0 0.1 0.2 0.3 0.4 0.50

0.25

0.5

0.75

1

ΔΕ�h, ΔEz�h �GHz�

F

FIG. 4. (Color online) Fidelity analysis for the numerically opti-
mized CPHASE gates under charge noise (black) and nuclear spin noise
(red) at �L/h = �R/h = 15 GHz and τ/h = τi/h = 0.5 GHz,
i = 1, . . . ,4. The energy fluctuations δε between different charge
configurations model charge noise. Nuclear spins cause local, low-
frequency magnetic field fluctuations of the energy δEz. Both noise
sources can be described by a classical probability distribution with
the rms δε (for charge noise) and δEz (for nuclear spin noise). The
fidelity F is extracted from 1000 gate simulations according to Eq. (4).
Increasing the uncertainties suppresses F strongly till it saturates at
0.25 (for charge noise) and 9/64 (for nuclear spin noise) (see the
horizontal lines). The initial decay of F is described by a Gaussian
decay law (see the dotted lines).
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by a Gaussian probability distribution with the rms δEz (in
energy units).

Figure 4 shows that F decreases rapidly with δEz. Again, a
Gaussian decay is observed with a decay constant determined
by τ for small δEz. The influence of hyperfine interactions
differs from charge noise. Local magnetic fields lift the state
crossings that are protected by the spin-selection rules (see
blue markings in Fig. 2). Not only is the coherence lost for
large δEz, but leakage further suppresses F . The limit of large
δEz can be approximated with F = 9/64. All off-diagonal
entries of the density matrix are removed. Additionally, some
states are mixed with leakage states. |1L1R〉 goes to a mixed
state with three other states; |1L0R〉 and |0L1R〉 mix with one
other state each.

Si is a popular QD material because the number of finite-
spin nuclei is small [15]. Nevertheless, noise from nuclear
spins was identified to be dominant in the first spin qubit
manipulations of gate-defined Si QDs [18]. δEz/h = 7.5 ×
10−4 GHz in natural Si (see Ref. [28]) is sufficient for nearly
perfect two-qubit pulse gates. The fluctuations of the nuclear
spins decrease further for isotopically purified Si instead of
natural Si, a system which has shown rapid experimental
progress recently [30,31]. We note that δEz/h = 30 MHz for
GaAs QDs would be problematic for high-fidelity entangling
operations.

V. CONCLUSION

I have constructed a two-qubit pulse gate for the HQ—
a qubit encoded in a three-electron configuration on a gate-
defined DQD. Applying fast voltage pulses at gates close to the
QDs enables the transfer of single electrons between QDs. The
setup is tuned to the anticrossing of |0L0R〉 with the leakage
state |E〉. |0L0R〉 picks up a nontrivial phase without leaking
to |E〉, while all the other two-qubit states accumulate trivial
phases. The main challenge of the entangling gate is to avoid
leakage to other states. One can use a two-step procedure.
(1) The right HQ is pulsed to the readout configuration. Here,
|1R〉 goes to (2,1), but |0R〉 stays in (1,2). (2) |0L1R〉 passes
through a DLZC during the pulse cycle. The pulse profile is
adjusted to avoid leakage after the full pulse cycle. Note that an
adiabatic manipulation protocol can substitute the pulse-gated
manipulation [32].

Cross-couplings between anticrossings, charge noise, and
nuclear spin noise introduce errors for the pulse-gated two-
qubit operation. Cross-couplings between anticrossings are
problematic as they open state crossings. Also these mech-
anism slightly influence the energy levels and the sizes of
the anticrossings. Reasonably small values of τ/� � 5%
still permit excellent gates through pulse shaping. Charge
noise is problematic because the gate tunes the HQs between
different charge configurations. Current QD experiments
suggest that charge noise is critical for the pulse-gated
entangling operation. Nuclear spins are unimportant for the
pulse-gated entangling operation of HQs in natural Si and, even
more, for isotopically purified Si. I am hopeful that material
improvements and advances in fabrication techniques for Si
QDs still allow an experimental realization of this gate in the
near future.

Pulse gates provide universal control of HQs through
single-qubit operations, which have been implemented ex-
perimentally [3,4], together with the described two-qubit
entangling gate. Because this setup can be scaled up trivially
(see Fig. 1), further experimental progress should be stimulated
to realize all-pulse-gated manipulations of HQs.
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APPENDIX A: FIDELITY DESCRIPTION
OF NOISY GATES

U
ξ
n describes a noisy operation with a parameter ξ which

modifies the gate between different runs of the experiment and
obeys a classical probability distribution f (ξ ). The entangle-
ment fidelity is a measure for the gate performance [33,34]:

F (ξ ) = tr
{
ρRS1R ⊗ [

U−1
i Uξ

n

]
S
ρRS1R ⊗ [(

Uξ
n

)−1
Ui

]
S

}
.

(A1)

Ui describes the ideal time evolution. The state space is
doubled to two identical Hilbert spaces R and S. ρRS = |ψ〉〈ψ |
is a maximally entangled state on the larger Hilbert space;
e.g., |ψ〉 = (|0000〉 + |0110〉 + |1001〉 + |1111〉)/2. The gate
fidelity F is calculated by averaging Eq. (A1) over many
instances of U

ξ
n , giving F = ∫

dξf (ξ )F (ξ ). F = 1 for perfect
gates. This definition captures also leakage errors.

APPENDIX B: EXTENDED BASIS

Table II provides an extended state basis in sz = 1 for
the description of two HQs in (1,2,1,2), (1,2,2,1), and
(1,1,2,2). States with a doubly occupied triplet at QD1 or
QD3 are neglected because the triplet configurations at QD1

and QD3 are assumed to require much higher energies than the
singlet configurations (see Sec. II). |1L1R〉, |1L0R〉, |0L1R〉,
and |0L0R〉 are the computational basis of two HQs. The
states |L〉, |1LB〉, and |0LB〉 are partially filled during the
manipulation procedure. All other states are leakage states
that are ideally unfilled during the manipulation. The states
describe the spin configurations at QDi , i = 1, . . . ,4, of the
array of four QDs, and they are grouped into subspaces of equal
energies.

It is straightforward to prove that the 23 states in Table II
are a complete set to describe the six-electron spin problem of
two HQs. Note that the discussion is restricted to total sz = 1.
One needs two additional spin-↑ electrons compared to the
spin-↓ electrons in the (1,2,1,2) configuration, giving in total
(6
4) = 15 choices. In the (1,2,2,1) and (1,1,2,2) configurations,

the electrons at QD2 and at QD4 are always paired to a
singlet state (because it is strongly unfavored to reach a
triplet at these QDs), giving (4

3) = 4 choices to reach in total
sz = 1.
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TABLE II. Extended state basis with the total spin quantum number sz = 1 for the setup of six
electrons distributed over four QDs. Each entry of the states describes a spin configuration at one of
the QDs with the notation |QD1,QD2,QD3,QD4〉. All the relevant states for the electron configurations
(nQD1 ,nQD2 ,nQD3 ,nQD4 ) = (1,2,1,2), (1,2,2,1), and (1,1,2,2) are included. Further details are given in the
text.

state energy
—

—
—

—
—

—
—

—
—

—
—

–
(1

,2
,1

,2
)

—
—

—
—

—
—

—
—

—
—

—
– |1L1R = 2

3
| ↓ T+

1
3
| ↑ T0

2
3
| ↓ T+

1
3
| ↑ T0

ΩL + ΩR

|α1 = 1
3
| ↓ T+ + 2

3
| ↑ T0

2
3
| ↓ T+

1
3
| ↑ T0

|α2 = 2
3
| ↓ T+

1
3
| ↑ T0

1
3
| ↓ T+ + 2

3
| ↑ T0

|α3 = 1
3
| ↓ T+ + 2

3
| ↑ T0

1
3
| ↓ T+ + 2

3
| ↑ T0

|α4 = | ↑ T− ↑ T+

|α5 = | ↑ T+ ↑ T−
|α6 = | ↑ T+ ↓ T0

|α7 = | ↓ T0 ↑ T+

|1L0R = 2
3
| ↓ T+

1
3
| ↑ T0 | ↑ S

ΩL|L = 1
6
| ↑ T0 −

√
3

2
| ↑ T+ + 1

2
√

3
| ↓ T+ |S

|β = 1
2
| ↑ T+ + 1

2
| ↓ T+ + 1

2
| ↑ T0 |S

|0L1R = | ↑ S 2
3
| ↓ T+

1
3
| ↑ T0

ΩR|γ1 = | ↑ S 1
3
| ↓ T+ + 2

3
| ↑ T0

|γ2 = | ↓ S ↑ T+

|0L0R = | ↑ S ↑ S 0

—
(1

,2
,2

,1
)

— |1LB = 2
3
| ↓ T+

1
3
| ↑ T0 |S

Δ43 + ΩL|δ1 = 1
3
| ↓ T+ + 2

3
| ↑ T0 |S

|δ2 = | ↑ T+S

|0LB = | ↑ SS Δ43

–
(1

,1
,2

,2
)

– |μ1 = | ↑↑ ST0

Δ23 + ΩR|μ2 = | ↑↓ ST+

|μ3 = | ↓↑ ST+

|E = | ↑↑ SS Δ23
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