001     187196
005     20240610121121.0
024 7 _ |2 doi
|a 10.1016/j.surfcoat.2014.09.002
024 7 _ |a WOS:000346895000044
|2 WOS
037 _ _ |a FZJ-2015-00870
041 _ _ |a English
082 _ _ |a 620
100 1 _ |0 P:(DE-HGF)0
|a Zhuang, Chunqiang
|b 0
|e Corresponding Author
245 _ _ |a Mechanical behavior related to various bonding states in amorphous Si–C–N hard films
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2014
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1422343792_24689
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a A series of amorphous Si–C–N hard films were prepared by an electron cyclotron resonance chemical vapor deposition method. Microstructure characterization revealed that amorphous Si–C–N hard films contained various bonding states. Among them, Sisingle bondN and Sisingle bondC bonds played a leading role in determining the microstructure of amorphous Si–C–N hard films. Mechanical measurements showed that the hardness of these films varied between 17 GPa and 28 GPa as a function of the tetramethylsilane flow rate. A close relation between various bonding states and hardness was found. The variation of hardness was dominated by the bond fraction that corresponded to various bonding states. Macroscopic mechanical properties of a material were illustrated from the perspective of microscopic structural characterization.
536 _ _ |0 G:(DE-HGF)POF2-42G41
|a 42G - Peter Grünberg-Centre (PG-C) (POF2-42G41)
|c POF2-42G41
|f POF II
|x 0
700 1 _ |0 P:(DE-HGF)0
|a Schlempert, Christoph
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Fuchs, Regina
|b 2
700 1 _ |0 P:(DE-Juel1)140353
|a Zhang, Lei
|b 3
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Huang, Nan
|b 4
700 1 _ |0 P:(DE-Juel1)130188
|a Vogel, Michael
|b 5
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Staedtler, Thorsten
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Jiang, Xin
|b 7
773 _ _ |0 PERI:(DE-600)1502240-7
|a 10.1016/j.surfcoat.2014.09.002
|p 353 - 358
|t Surface and coatings technology
|v 258
|x 0257-8972
|y 2014
856 4 _ |u https://juser.fz-juelich.de/record/187196/files/FZJ-2015-00870.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:187196
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)140353
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130188
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-143
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Configuration-Based Phenomena
|x 0
913 1 _ |0 G:(DE-HGF)POF2-42G41
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|v Peter Grünberg-Centre (PG-C)
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21