000187199 001__ 187199
000187199 005__ 20240610121121.0
000187199 0247_ $$2doi$$a10.1039/c3ee43161d
000187199 0247_ $$2Handle$$a2128/8294
000187199 0247_ $$2WOS$$aWOS:000329550700030
000187199 0247_ $$2altmetric$$aaltmetric:21824935
000187199 037__ $$aFZJ-2015-00873
000187199 041__ $$aEnglish
000187199 082__ $$a690
000187199 1001_ $$0P:(DE-HGF)0$$aSun, Shuangyong$$b0
000187199 245__ $$aThe origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells
000187199 260__ $$aCambridge$$bRSC Publ.$$c2014
000187199 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1422342550_24689
000187199 3367_ $$2DataCite$$aOutput Types/Journal article
000187199 3367_ $$00$$2EndNote$$aJournal Article
000187199 3367_ $$2BibTeX$$aARTICLE
000187199 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000187199 3367_ $$2DRIVER$$aarticle
000187199 520__ $$aThis work reports a study into the origin of the high efficiency in solution-processable bilayer solar cells based on methylammonium lead iodide (CH3NH3PbI3) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM). Our cell has a power conversion efficiency (PCE) of 5.2% under simulated AM 1.5G irradiation (100 mW cm−2) and an internal quantum efficiency of close to 100%, which means that nearly all the absorbed photons are converted to electrons and are efficiently collected at the electrodes. This implies that the exciton diffusion, charge transfer and charge collection are highly efficient. The high exciton diffusion efficiency is enabled by the long diffusion length of CH3NH3PbI3 relative to its thickness. Furthermore, the low exciton binding energy of CH3NH3PbI3 implies that exciton splitting at the CH3NH3PbI3/PC61BM interface is very efficient. With further increase in CH3NH3PbI3 thickness, a higher PCE of 7.4% could be obtained. This is the highest efficiency attained for low temperature solution-processable bilayer solar cells to date.
000187199 536__ $$0G:(DE-HGF)POF2-42G41$$a42G - Peter Grünberg-Centre (PG-C) (POF2-42G41)$$cPOF2-42G41$$fPOF II$$x0
000187199 7001_ $$0P:(DE-HGF)0$$aSalim, Teddy$$b1
000187199 7001_ $$0P:(DE-HGF)0$$aMathews, Nripan$$b2
000187199 7001_ $$0P:(DE-Juel1)145413$$aDuchamp, Martial$$b3
000187199 7001_ $$0P:(DE-Juel1)144965$$aBoothroyd, Christopher Brian$$b4
000187199 7001_ $$0P:(DE-HGF)0$$aXing, Guichuan$$b5
000187199 7001_ $$0P:(DE-HGF)0$$aSum, Tze Chien$$b6
000187199 7001_ $$0P:(DE-HGF)0$$aLam, Yeng Ming$$b7$$eCorresponding Author
000187199 773__ $$0PERI:(DE-600)2439879-2$$a10.1039/c3ee43161d$$n1$$p399-407$$tEnergy & environmental science$$v7$$x1754-5692$$y2014
000187199 8564_ $$uhttps://juser.fz-juelich.de/record/187199/files/FZJ-2015-00873.pdf$$yOpenAccess
000187199 8564_ $$uhttps://juser.fz-juelich.de/record/187199/files/FZJ-2015-00873.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000187199 8564_ $$uhttps://juser.fz-juelich.de/record/187199/files/FZJ-2015-00873.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000187199 8564_ $$uhttps://juser.fz-juelich.de/record/187199/files/FZJ-2015-00873.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000187199 909CO $$ooai:juser.fz-juelich.de:187199$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000187199 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000187199 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000187199 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000187199 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000187199 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000187199 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000187199 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000187199 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000187199 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000187199 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000187199 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000187199 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000187199 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000187199 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000187199 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15
000187199 9141_ $$y2014
000187199 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145413$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000187199 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144965$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000187199 9132_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000187199 9131_ $$0G:(DE-HGF)POF2-42G41$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vPeter Grünberg-Centre (PG-C)$$x0
000187199 920__ $$lyes
000187199 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000187199 9801_ $$aFullTexts
000187199 980__ $$ajournal
000187199 980__ $$aVDB
000187199 980__ $$aUNRESTRICTED
000187199 980__ $$aFullTexts
000187199 980__ $$aI:(DE-Juel1)PGI-5-20110106
000187199 981__ $$aI:(DE-Juel1)ER-C-1-20170209