001     187199
005     20240610121121.0
024 7 _ |2 doi
|a 10.1039/c3ee43161d
024 7 _ |2 Handle
|a 2128/8294
024 7 _ |2 WOS
|a WOS:000329550700030
024 7 _ |a altmetric:21824935
|2 altmetric
037 _ _ |a FZJ-2015-00873
041 _ _ |a English
082 _ _ |a 690
100 1 _ |0 P:(DE-HGF)0
|a Sun, Shuangyong
|b 0
245 _ _ |a The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells
260 _ _ |a Cambridge
|b RSC Publ.
|c 2014
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1422342550_24689
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a This work reports a study into the origin of the high efficiency in solution-processable bilayer solar cells based on methylammonium lead iodide (CH3NH3PbI3) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM). Our cell has a power conversion efficiency (PCE) of 5.2% under simulated AM 1.5G irradiation (100 mW cm−2) and an internal quantum efficiency of close to 100%, which means that nearly all the absorbed photons are converted to electrons and are efficiently collected at the electrodes. This implies that the exciton diffusion, charge transfer and charge collection are highly efficient. The high exciton diffusion efficiency is enabled by the long diffusion length of CH3NH3PbI3 relative to its thickness. Furthermore, the low exciton binding energy of CH3NH3PbI3 implies that exciton splitting at the CH3NH3PbI3/PC61BM interface is very efficient. With further increase in CH3NH3PbI3 thickness, a higher PCE of 7.4% could be obtained. This is the highest efficiency attained for low temperature solution-processable bilayer solar cells to date.
536 _ _ |0 G:(DE-HGF)POF2-42G41
|a 42G - Peter Grünberg-Centre (PG-C) (POF2-42G41)
|c POF2-42G41
|f POF II
|x 0
700 1 _ |0 P:(DE-HGF)0
|a Salim, Teddy
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Mathews, Nripan
|b 2
700 1 _ |0 P:(DE-Juel1)145413
|a Duchamp, Martial
|b 3
700 1 _ |0 P:(DE-Juel1)144965
|a Boothroyd, Christopher Brian
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Xing, Guichuan
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Sum, Tze Chien
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Lam, Yeng Ming
|b 7
|e Corresponding Author
773 _ _ |0 PERI:(DE-600)2439879-2
|a 10.1039/c3ee43161d
|n 1
|p 399-407
|t Energy & environmental science
|v 7
|x 1754-5692
|y 2014
856 4 _ |u https://juser.fz-juelich.de/record/187199/files/FZJ-2015-00873.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/187199/files/FZJ-2015-00873.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/187199/files/FZJ-2015-00873.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/187199/files/FZJ-2015-00873.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:187199
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145413
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144965
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-143
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Configuration-Based Phenomena
|x 0
913 1 _ |0 G:(DE-HGF)POF2-42G41
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|v Peter Grünberg-Centre (PG-C)
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |0 LIC:(DE-HGF)CCBYNC3
|2 HGFVOC
|a Creative Commons Attribution-NonCommercial CC BY-NC 3.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0400
|2 StatID
|a Allianz-Lizenz / DFG
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)9915
|2 StatID
|a IF >= 15
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21