000187202 001__ 187202
000187202 005__ 20240610121121.0
000187202 0247_ $$2doi$$a10.1002/admi.201400230
000187202 0247_ $$2WOS$$aWOS:000348287700002
000187202 037__ $$aFZJ-2015-00876
000187202 041__ $$aEnglish
000187202 082__ $$a540
000187202 1001_ $$0P:(DE-Juel1)144926$$aKovacs, Andras$$b0$$eCorresponding Author$$ufzj
000187202 245__ $$aGraphoepitaxy of High-Quality GaN Layers on Graphene/6H-SiC
000187202 260__ $$aWeinheim$$bWiley-VCH$$c2015
000187202 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1422346483_24681
000187202 3367_ $$2DataCite$$aOutput Types/Journal article
000187202 3367_ $$00$$2EndNote$$aJournal Article
000187202 3367_ $$2BibTeX$$aARTICLE
000187202 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000187202 3367_ $$2DRIVER$$aarticle
000187202 520__ $$aThe implementation of graphene layers in gallium nitride (GaN) heterostructure growth can solve self-heating problems in nitride-based high-power electronic and light-emitting optoelectronic devices. In the present study, high-quality GaN layers are grown on patterned graphene layers and 6H–SiC by metalorganic chemical vapor deposition. A periodic pattern of graphene layers is fabricated on 6H–SiC by using polymethyl methacrylate deposition and electron beam lithography, followed by etching using an Ar/O2 gas atmosphere. Prior to GaN growth, an AlN buffer layer and an Al0.2Ga0.8N transition layer are deposited. The atomic structures of the interfaces between the 6H–SiC and graphene, as well as between the graphene and AlN, are studied using scanning transmission electron microscopy. Phase separation of the Al0.2Ga0.8N transition layer into an AlN and GaN superlattice is observed. Above the continuous graphene layers, polycrystalline defective GaN is rapidly overgrown by better quality single-crystalline GaN from the etched regions. The lateral overgrowth of GaN results in the presence of a low density of dislocations (≈109 cm−2) and inversion domains and the formation of a smooth GaN surface
000187202 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000187202 7001_ $$0P:(DE-Juel1)145413$$aDuchamp, Martial$$b1$$ufzj
000187202 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b2$$ufzj
000187202 7001_ $$0P:(DE-HGF)0$$aYakimova, Rositza$$b3
000187202 7001_ $$0P:(DE-HGF)0$$aNeumann, Peter L.$$b4
000187202 7001_ $$0P:(DE-HGF)0$$aBehmenburg, Hannes$$b5
000187202 7001_ $$0P:(DE-HGF)0$$aFoltynski, Bartozs$$b6
000187202 7001_ $$0P:(DE-HGF)0$$aGiesen, Christoph$$b7
000187202 7001_ $$0P:(DE-HGF)0$$aHeuken, Michael$$b8
000187202 7001_ $$0P:(DE-HGF)0$$aPecz, Bela$$b9
000187202 773__ $$0PERI:(DE-600)2750376-8$$a10.1002/admi.201400230$$n2$$p1400230$$tAdvanced materials interfaces$$v2$$x2196-7350$$y2015
000187202 8564_ $$uhttps://juser.fz-juelich.de/record/187202/files/FZJ-2015-00876.pdf$$yRestricted
000187202 909CO $$ooai:juser.fz-juelich.de:187202$$pVDB
000187202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000187202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145413$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000187202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000187202 9130_ $$0G:(DE-HGF)POF2-42G41$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vPeter Grünberg-Centre (PG-C)$$x0
000187202 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000187202 9141_ $$y2015
000187202 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer Review unknown
000187202 920__ $$lyes
000187202 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000187202 980__ $$ajournal
000187202 980__ $$aVDB
000187202 980__ $$aI:(DE-Juel1)PGI-5-20110106
000187202 980__ $$aUNRESTRICTED
000187202 981__ $$aI:(DE-Juel1)ER-C-1-20170209