001     187202
005     20240610121121.0
024 7 _ |a 10.1002/admi.201400230
|2 doi
024 7 _ |a WOS:000348287700002
|2 WOS
037 _ _ |a FZJ-2015-00876
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Kovacs, Andras
|0 P:(DE-Juel1)144926
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Graphoepitaxy of High-Quality GaN Layers on Graphene/6H-SiC
260 _ _ |a Weinheim
|c 2015
|b Wiley-VCH
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1422346483_24681
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The implementation of graphene layers in gallium nitride (GaN) heterostructure growth can solve self-heating problems in nitride-based high-power electronic and light-emitting optoelectronic devices. In the present study, high-quality GaN layers are grown on patterned graphene layers and 6H–SiC by metalorganic chemical vapor deposition. A periodic pattern of graphene layers is fabricated on 6H–SiC by using polymethyl methacrylate deposition and electron beam lithography, followed by etching using an Ar/O2 gas atmosphere. Prior to GaN growth, an AlN buffer layer and an Al0.2Ga0.8N transition layer are deposited. The atomic structures of the interfaces between the 6H–SiC and graphene, as well as between the graphene and AlN, are studied using scanning transmission electron microscopy. Phase separation of the Al0.2Ga0.8N transition layer into an AlN and GaN superlattice is observed. Above the continuous graphene layers, polycrystalline defective GaN is rapidly overgrown by better quality single-crystalline GaN from the etched regions. The lateral overgrowth of GaN results in the presence of a low density of dislocations (≈109 cm−2) and inversion domains and the formation of a smooth GaN surface
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|x 0
|f POF III
700 1 _ |a Duchamp, Martial
|0 P:(DE-Juel1)145413
|b 1
|u fzj
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 2
|u fzj
700 1 _ |a Yakimova, Rositza
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Neumann, Peter L.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Behmenburg, Hannes
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Foltynski, Bartozs
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Giesen, Christoph
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Heuken, Michael
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Pecz, Bela
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1002/admi.201400230
|0 PERI:(DE-600)2750376-8
|n 2
|p 1400230
|t Advanced materials interfaces
|v 2
|y 2015
|x 2196-7350
856 4 _ |u https://juser.fz-juelich.de/record/187202/files/FZJ-2015-00876.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:187202
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144926
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145413
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144121
913 0 _ |a DE-HGF
|b Schlüsseltechnologien
|l Grundlagen für zukünftige Informationstechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-42G41
|2 G:(DE-HGF)POF2-400
|v Peter Grünberg-Centre (PG-C)
|x 0
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a Peer Review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21