000187233 001__ 187233
000187233 005__ 20240712100846.0
000187233 0247_ $$2doi$$a10.5194/acpd-14-32629-2014
000187233 0247_ $$2ISSN$$a1680-7367
000187233 0247_ $$2ISSN$$a1680-7375
000187233 0247_ $$2Handle$$a2128/8299
000187233 037__ $$aFZJ-2015-00906
000187233 082__ $$a550
000187233 1001_ $$aDi Liberto, L.$$b0$$eCorresponding Author
000187233 245__ $$aLagrangian analysis of microphysical and chemical processes in the Antarctic stratosphere: a case study
000187233 260__ $$aKatlenburg-Lindau$$bEGU$$c2014
000187233 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1422347517_24689
000187233 3367_ $$2DataCite$$aOutput Types/Journal article
000187233 3367_ $$00$$2EndNote$$aJournal Article
000187233 3367_ $$2BibTeX$$aARTICLE
000187233 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000187233 3367_ $$2DRIVER$$aarticle
000187233 520__ $$aWe investigated chemical and microphysical processes in the late winter in the Antarctic lower stratosphere, after the first chlorine activation and initial ozone depletion. We focused on a time interval when both further chlorine activation and ozone loss, but also chlorine deactivation, occur.We performed a comprehensive Lagrangian analysis to simulate the evolution of an airmass along a ten-day trajectory, coupling a detailed microphysical box model with a chemistry model. Model results have been compared with in-situ and remote sensing measurements of particles and ozone at the start and end points of the trajectory, and satellite measurements of key chemical species and clouds along it.Different model runs have been performed to understand the relative role of solid and liquid Polar Stratospheric Cloud (PSC) particles for the heterogeneous chemistry, and for the denitrification caused by particle sedimentation. According to model results, under the conditions investigated, ozone depletion is not affected significantly by the presence of Nitric Acid Trihydrate (NAT) particles, as the observed depletion rate can equally well be reproduced by heterogeneous chemistry on cold liquid aerosol, with a surface area density close to background values.Under the conditions investigated, the impact of denitrification is important for the abundances of chlorine reservoirs after PSC evaporation, thus stressing the need of using appropriate microphysical models in the simulation of chlorine deactivation. Conversely, we found that the effect of particle sedimentation and denitrification on the amount of ozone depletion is rather small in the case investigated. In the first part of the analysed period, when a PSC was present in the airmass, sedimentation led to smaller available particle surface area and less chlorine activation, and thus less ozone depletion. After the PSC evaporation, in the last three days of the simulation, denitrification increases ozone loss by hampering chlorine deactivation.
000187233 536__ $$0G:(DE-HGF)POF2-234$$a234 - Composition and Dynamics of the Upper Troposphere and Stratosphere (POF2-234)$$cPOF2-234$$fPOF II$$x0
000187233 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000187233 7001_ $$0P:(DE-HGF)0$$aLehmann, R$$b1
000187233 7001_ $$0P:(DE-Juel1)159462$$aTritscher, I.$$b2$$ufzj
000187233 7001_ $$aFierli, F.$$b3
000187233 7001_ $$aMercer, J. L.$$b4
000187233 7001_ $$aSnels, M.$$b5
000187233 7001_ $$aDi Donfrancesco, G.$$b6
000187233 7001_ $$aDeshler, T.$$b7
000187233 7001_ $$aLuo, B. P.$$b8
000187233 7001_ $$0P:(DE-Juel1)129122$$aGrooss, Jens-Uwe$$b9$$ufzj
000187233 7001_ $$aArnone, E.$$b10
000187233 7001_ $$aDinelli, B. M.$$b11
000187233 7001_ $$aCairo, F.$$b12
000187233 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acpd-14-32629-2014$$gVol. 14, no. 23, p. 32629 - 32665$$n23$$p32629 - 32665$$tAtmospheric chemistry and physics / Discussions$$v14$$x1680-7375$$y2014
000187233 8564_ $$uhttps://juser.fz-juelich.de/record/187233/files/FZJ-2015-00906.pdf$$yOpenAccess
000187233 8564_ $$uhttps://juser.fz-juelich.de/record/187233/files/FZJ-2015-00906.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000187233 8564_ $$uhttps://juser.fz-juelich.de/record/187233/files/FZJ-2015-00906.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000187233 8564_ $$uhttps://juser.fz-juelich.de/record/187233/files/FZJ-2015-00906.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000187233 909CO $$ooai:juser.fz-juelich.de:187233$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000187233 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000187233 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000187233 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000187233 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000187233 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000187233 9141_ $$y2014
000187233 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)128851$$aExternal Institute$$b1$$kExtern
000187233 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159462$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000187233 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000187233 9132_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000187233 9131_ $$0G:(DE-HGF)POF2-234$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and Dynamics of the Upper Troposphere and Stratosphere$$x0
000187233 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000187233 9801_ $$aFullTexts
000187233 980__ $$ajournal
000187233 980__ $$aVDB
000187233 980__ $$aUNRESTRICTED
000187233 980__ $$aFullTexts
000187233 980__ $$aI:(DE-Juel1)IEK-7-20101013
000187233 981__ $$aI:(DE-Juel1)ICE-4-20101013