001     187233
005     20240712100846.0
024 7 _ |2 doi
|a 10.5194/acpd-14-32629-2014
024 7 _ |2 ISSN
|a 1680-7367
024 7 _ |2 ISSN
|a 1680-7375
024 7 _ |2 Handle
|a 2128/8299
037 _ _ |a FZJ-2015-00906
082 _ _ |a 550
100 1 _ |a Di Liberto, L.
|b 0
|e Corresponding Author
245 _ _ |a Lagrangian analysis of microphysical and chemical processes in the Antarctic stratosphere: a case study
260 _ _ |a Katlenburg-Lindau
|b EGU
|c 2014
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1422347517_24689
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a We investigated chemical and microphysical processes in the late winter in the Antarctic lower stratosphere, after the first chlorine activation and initial ozone depletion. We focused on a time interval when both further chlorine activation and ozone loss, but also chlorine deactivation, occur.We performed a comprehensive Lagrangian analysis to simulate the evolution of an airmass along a ten-day trajectory, coupling a detailed microphysical box model with a chemistry model. Model results have been compared with in-situ and remote sensing measurements of particles and ozone at the start and end points of the trajectory, and satellite measurements of key chemical species and clouds along it.Different model runs have been performed to understand the relative role of solid and liquid Polar Stratospheric Cloud (PSC) particles for the heterogeneous chemistry, and for the denitrification caused by particle sedimentation. According to model results, under the conditions investigated, ozone depletion is not affected significantly by the presence of Nitric Acid Trihydrate (NAT) particles, as the observed depletion rate can equally well be reproduced by heterogeneous chemistry on cold liquid aerosol, with a surface area density close to background values.Under the conditions investigated, the impact of denitrification is important for the abundances of chlorine reservoirs after PSC evaporation, thus stressing the need of using appropriate microphysical models in the simulation of chlorine deactivation. Conversely, we found that the effect of particle sedimentation and denitrification on the amount of ozone depletion is rather small in the case investigated. In the first part of the analysed period, when a PSC was present in the airmass, sedimentation led to smaller available particle surface area and less chlorine activation, and thus less ozone depletion. After the PSC evaporation, in the last three days of the simulation, denitrification increases ozone loss by hampering chlorine deactivation.
536 _ _ |0 G:(DE-HGF)POF2-234
|a 234 - Composition and Dynamics of the Upper Troposphere and Stratosphere (POF2-234)
|c POF2-234
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-HGF)0
|a Lehmann, R
|b 1
700 1 _ |0 P:(DE-Juel1)159462
|a Tritscher, I.
|b 2
|u fzj
700 1 _ |a Fierli, F.
|b 3
700 1 _ |a Mercer, J. L.
|b 4
700 1 _ |a Snels, M.
|b 5
700 1 _ |a Di Donfrancesco, G.
|b 6
700 1 _ |a Deshler, T.
|b 7
700 1 _ |a Luo, B. P.
|b 8
700 1 _ |0 P:(DE-Juel1)129122
|a Grooss, Jens-Uwe
|b 9
|u fzj
700 1 _ |a Arnone, E.
|b 10
700 1 _ |a Dinelli, B. M.
|b 11
700 1 _ |a Cairo, F.
|b 12
773 _ _ |0 PERI:(DE-600)2069857-4
|a 10.5194/acpd-14-32629-2014
|g Vol. 14, no. 23, p. 32629 - 32665
|n 23
|p 32629 - 32665
|t Atmospheric chemistry and physics / Discussions
|v 14
|x 1680-7375
|y 2014
856 4 _ |u https://juser.fz-juelich.de/record/187233/files/FZJ-2015-00906.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/187233/files/FZJ-2015-00906.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/187233/files/FZJ-2015-00906.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/187233/files/FZJ-2015-00906.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:187233
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-Juel1)128851
|a External Institute
|b 1
|k Extern
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)159462
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129122
|a Forschungszentrum Jülich GmbH
|b 9
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-244
|1 G:(DE-HGF)POF3-240
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Atmosphäre und Klima
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
913 1 _ |0 G:(DE-HGF)POF2-234
|1 G:(DE-HGF)POF2-230
|2 G:(DE-HGF)POF2-200
|a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|v Composition and Dynamics of the Upper Troposphere and Stratosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
|a Creative Commons Attribution CC BY 3.0
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21