Introduction to Big Data in HPC, Hadoop and HDFS – Part Two

Research Field Key Technologies

Jülich Supercomputing Centre

Supercomputing & Big Data

Dr. – Ing. Morris Riedel

Adjunct Associated Professor, University of Iceland
Jülich Supercomputing Centre, Germany

Head of Research Group High Productivity Data Processing

Cy-Tera/LinkSCEEM HPC Administrator Workshop, Nicosia, The Cyprus Institute, 19th January – 21th January 2015

Overall Course Outline

Overall Course Outline

Part One 'Big Data' Challenges & HPC Tools

- Understanding 'Big Data' in Science & Engineering
- Statistical Data Mining and Learning from 'Big Data'
- OpenMP/MPI Tool Example for Clustering 'Big Data'
- MPI Tool Example for Classification of 'Big Data'

coffee break

Part Two 'Big Data' & Distributed Computing Tools

- Exploring Parallel & Distributed Computing Approaches
- Examples of Map-Reduce & 'Big Data' Processing with Hadoop
- Tools for handling 'Big Data' storage & replication methods
- Technologied for Large-scale distributed 'Big Data' Management

Part Two

Part Two – Outline

Part One 'Big Data' Challenges & HPC Tools

- Understanding 'Big Data' in Science & Engineering
- Statistical Data Mining and Learning from 'Big Data'
- OpenMP/MPI Tool Example for Clustering 'Big Data'
- MPI Tool Example for Classification of 'Big Data'

coffee break

Part Two 'Big Data' & Distributed Computing Tools

- Exploring Parallel & Distributed Computing Approaches
- Examples of Map-Reduce & 'Big Data' Processing with Hadoop
- Tools for handling 'Big Data' storage & replication methods
- Technologies for Large-scale distributed 'Big Data' Management

Emerging Big Data Analytics vs. Traditional Data Analysis

- Data Analytics are powerful techniques to work on large data
- Data Analysis is the in-depth interpretation of research data
- Both are a complementary technique for understanding datasets
- Data analytics may point to interesting ,events' for data analysis

Data Analysis supports the search for 'causality'

- Describing exactly WHY something is happening
- Understanding causality is hard and time-consuming
- Searching it often leads us down the wrong paths

Big Data Analytics focussed on 'correlation'

- Not focussed on causality enough THAT it is happening
- Discover novel patterns/events and WHAT is happening more quickly
- Using correlations for invaluable insights often data speaks for itself

Google Flu Analytics – Hype vs. (Scientific) Reality

2009 – H1N1 Virus made headlines

- Nature paper from Google employees
- Explains how Google is able to predict flus
- Not only national scale, but down to regions even
- Possible via logged big data 'search queries'

[1] Jeremy Ginsburg et al., 'Detecting influenza epidemics using search engine query data', Nature 457, 2009

2014 – The Parable of Google Flu

- Large errors in flu prediction were avoidable and offer lessons for the use of big data
- (1) Transparency and Replicability impossible
- (2) Study the Algorithm since they keep changing
- (3) It's Not Just About Size of the Data

Detecting influenza epidemics using search engine query data.

The property data and the

[1] David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani, 'The Parable of Google Flu: Traps in Big Data Analysis', Science Vol (343), 2014

Modern Data Mining Applications

Properties -> opportunity to exploit 'parallelism'

- Require handling of immense amounts of data quickly
- Provide data that is extremely regular and can be independently processed.
 - Many modern data mining applications require computing on compute nodes (i.e. processors/cores) that operate independently from each other
 - Independent means there is little or even no communication between tasks

Examples from the Web

- Ranking of Web pages by importance (includes iterated matrix-vector multiplication)
- Searches in social networking sites (includes search in graph with hundreds of nodes/billions of edges)

Major difference to typical HPC workload

Not simulation of physical phenomena

Hiding the complexity of computing & data

Many users of parallel data processing machines are not technical savvy users and don't need to know system details

- Scientific domain-scientists (e.g. biology) need to focus on their science & data
- Scientists from statistics/machine-learning need to focus on their algorithms & data

Non-technical users raise the following requirements for a 'data processing machinery':

[3] Science Progress

- The 'data processing machinery' needs to be easy to program
- The machinery must hide the complexities of computing (e.g. different networks, various operating systems, etc.)
- It needs to take care of the complexities of parallelization (e.g. scheduling, task distribution, synchronization, etc.)

'Data Processing Machinery' Available Today

Specialized Parallel Computers (aka Supercomputers)

- Interconnent between nodes is expensive (i.e. Infiniband/Myrinet)
- Interconnect not always needed in data analysis (independence in datasets)
- Programming is relatively difficult/specific, parallel programming is profession of its own

Large 'compute clusters' dominate data-intensive computing

- Offer 'cheaper' parallelism (no expensive interconnect & switches between nodes)
- Compute nodes (i.e. processors/cores)
 interconnected with usual ethernet cables
- Provide large collections of commodity hardware (e.g. normal processors/cores)

Possible Failures during Operation

Rule of thumb: The bigger the cluster is, the more frequent failures happen

Reasons for failures

- Loss of a single node within a rack (e.g. hard disk crash, memory errors)
- Loss of an entire rack (e.g. network issues)
- Operating software 'errors/bugs'

Consequences of failures

- Long-running compute tasks (e.g. hours/days) need to be restarted
- Already written data may become inconsistent and needs to be removed
- Access to unique datasets maybe hindered or even unavailable

Two Key Requirements for Big Data Analytics

Taking into account the ever-increasing amounts of 'big data'

- Think: 'Big Data' not always denoted by volume, there is velocity, variety, ...
- 1. Fault-tolerant and scalable data analytics processing approach
 - Data analytics computations must be divided in small task for easy restart
 - Restart of one data analytics task has no affect on other active tasks
 - E.g. Hadoop implementation of the map-reduce paradigm
 - A data analytics processing programming model is required that is easy to use and simple to program with fault-tolerance already within its design

2. Reliable scalable 'big data' storage method

- Data is (almost always) accessible even if failures in nodes/disks occur
- Enable the access of large quantities of data with good performance
- E.g. Hadoop Distributed File System (HDFS) implementation
- A specialized distributed file system is required that assumes failures as default

Part Two – Questions

Part Two – Outline

Part One 'Big Data' Challenges & HPC Tools

- Understanding 'Big Data' in Science & Engineering
- Statistical Data Mining and Learning from 'Big Data'
- OpenMP/MPI Tool Example for Clustering 'Big Data'
- MPI Tool Example for Classification of 'Big Data'

coffee break

Part Two 'Big Data' & Distributed Computing Tools

- Exploring Parallel & Distributed Computing Approaches
- Examples of Map-Reduce & 'Big Data' Processing with Hadoop
- Tools for handling 'Big Data' storage & replication methods
- Technologies for Large-scale distributed 'Big Data' Management

Motivation: Increasing complexities in traditional HPC

- Different HPC Programming elements (barriers, mutexes, shared-/distributed memory, etc.)
- Task distribution issues (scheduling, synchronization, inter-process-communication, etc.)
- Complex heterogenous architectures (UMA, NUMA, hybrid, various network topologies, etc.)
- Data/Functional parallelism approaches (SMPD, MPMD, domain decomposition, ghosts/halo, etc.)

[4] Introduction to High Performance Computing for Scientists and Engineers

More recently, increasing complexity for scientists working with GPGPU solutions (e.g. CUDA, etc.)

Inspired by Traditional Model in Computer Science

Break 'big tasks' in many sub-tasks and aggregate/combine results

Divide & Conquer

- (1) Partition the whole problem space
- (2) Combine the partly solutions of each partition to a whole solution of the problem

Origins of the Map-Reduce Programming Model

Origin: Invented via the proprietary Google technology by Google technologists

- Drivers: Applications and 'data mining approaches' around the Web
- Foundations go back to functional programming (e.g. LISP)

[6] MapReduce: Simplified Dataset on Large Clusters, 2004

Established 'open source community'

[7] Apache Hadoop

- Open Source Implementation of the 'map-reduce' programming model
- Based on Java programming language
- Broadly used also by commercial vendors within added-value software
- Foundation for many higher-level algorithms, frameworks, and approaches

Map-Reduce Programming Model

Enables many 'common calculations easily' on large-scale data

Efficiently performed on computing clusters (but security critics exists)

Offers system that is tolerant of hardware failures in computation Simple Programming Model

- Users need to provide two functions Map & Reduce with key/value pairs
- Tunings are possible with numerous configurations & combine operation

Key to the understanding: The Map-Reduce Run-Time

- Three phases not just 'map-reduce'
 - Takes care or the partitioning of input data and the communication
 - Manages parallel execution and <u>performs sort/shuffle/grouping</u>
 - Coordinates/schedules all tasks that either run Map and Reduce tasks
 - Handles faults/errors in execution and re-submit tasks
 - Experience from Practice: Talk to your users what they want to do with map-reduce exactly – algorithm implemented, developments?

Understanding Map-[Sort/Shuffle/Group]-Reduce

Key-Value Data Structures

Two key functions to program by user: map and reduce

Third phase 'sort/shuffle' works with keys and sorts/groups them

Input keys and values (k1,v1) are drawn from a different domain than the output keys and values (k2,v2)

Intermediate keys and values (k2,v2) are from the same domain as the output keys and values

- reduce (k2,list(v2)) → list(v2)

Key-Value Data Structures Programming Effort

- map $(k1,v1) \rightarrow list(k2,v2)$
- reduce (k2,list(v2)) → list(v2)

Map-Reduce Example: WordCount

Map-Reduce on FutureGrid/FutureSystems

Transition Process FutureGrid/FutureSystems

- Affects straightforward use, but elements remain
- Contact <u>m.riedel@fz-juelich.de</u> if interested

- Apply for an account
- Upload of SSH is necessary

Batch system (Torque) for scheduling

myHadoop → Torque

- Is a set of scripts that configure and instantiate Hadoop as a batch job
- myHadoop is currently installed on four different systems
 - Alamo, Hotel, India, Sierra

[17] FutureGrid/FutureSystems
Uolceland Teaching Project

[18] FutureGrid/FutureSystems
Submit WordCount Example

Further Map-Reduce example: URL Access

Very similar to the WordCount example is the following one:

Count of URL Access Frequency ('How often people use a page')

- Google (and other Web organizations) store billions of logs ('information')
- Users independently click on pages or follow links → nice parallelization
- Map function here processes logs of Web page requests → (URL, 1)
- Reduce function adds togeter all values for same URL → (URL, N times)

[6] MapReduce: Simplified Dataset on Large Clusters

- Many examples and applications are oriented towards processing large quantities of 'Web data text'
- Examples are typically not scientific datasets or contents of traditional business warehouse databases

Communication in Map-Reduce Algorithms

Greatest cost in the communication of a map-reduce algorithm Algorithms often trade communication cost against degree of parallelism and use principle of 'data locality' (use less network)

Map-Reduce Optimizations – Local Combiner

 The Map-Reduce programming model is based on Mapper, Combiner, Partitioner, and Reducer functionality supported by powerful shuffle/sort/aggregation of keys by the framework

modified from [14] Computer Vision using Map-Reduce

Not every problem can be solved with Map-Reduce

- Map-Reduce is not a solution to every parallelizable problem
- Only specific algorithms benefit from the map-reduce approach
- No communication-intensive parallel tasks (e.g. PDE solver) with MPI
- Applications that require often updates of existing datasets (writes)
- Implementations often have severe security limitations (distributed)

Example: Amazon Online retail sales

[8] Mining of Massive Datasets

- Requires a lot of updates on their product databases on each user action (a problem for the underlying file system optimization)
- Processes that involve 'little calculation' but still change the database
- Employs thousands of computing nodes and offers them ('Amazon Cloud')
- (maybe they using map-reduce for certain analytics: buying patterns)

Map-Reduce Limitation: Missing some form of 'State'

What if 'values depend on previously computed values'?

'Map-Reduce runs' map & reduce tasks in parallel and finishes

Problematic when result of one 'Map-Reduce run' is influencing another 'Map-Reduce run iteration' → 'state'?

[15] 'Study on Parallel SVM Based on MapReduce'

The Need for Iterative Map-Reduce

'Map-Reduce' runs map and reduce tasks and finishes

- Many parallel algorithms are 'iterative in nature'
- Example from many application fields such as data clustering, dimension reduction, link analysis, or machine learning
- 'Iterative Map-Reduce' enables algorithms with same Map-Reduce tasks ideas, but added is a loop to perform iterations until conditions are satisfied
- The transfer of 'states' from one iteration to another iteration is specifically supported in this approach

modified from [12] Z. Sun et al.

Iterative Map-Reduce with Twister

MapReduce jobs are controlled by the 'Client node'

Via a multi-step process

Configuration phase: The Client...

- ... assigns Map-Reduce methods to the job
- ... prepares KeyValue pairs
- ... prepares 'static data' for Map-Reduce tasks (through the partition file) if required

Running phase: The Client...

- ... between iterations receives results collected by the 'combine method'
- ... exits gracefully when the job is done (check condition)

Message communication between jobs

Realized with 'message brokers', i.e. NaradaBrokering or ActiveMQ

[13] Twister Web page

Overview: Iterative Map-Reduce with Twister

Distribute 'Small State' with Distributed Cache

Mappers need to read 'state' from a single file (vs. data chunks) Example: Distributed spell-check application

- Every Mapper reads same copy of the dictionary before processing docs
- Dictionary ('state') is small (~ MBs), but all nodes need to reach it

Solution: Hadoop provides 'DistributedCache'

- Optimal to contain 'small files' needed for initialization (or shared libraries even)
- 'State' (or input data= needed on all nodes of the cluster
- Simple use with Java 'DistributedCache Class'
- Method 'AddCacheFile()' add names of files which should be sent to all nodes on the system (need to be in HDFS) by the framework

st = state of data per iteration or small data required by every node

Hadoop 2.x vs. Hadoop 1.x Releases

Apache Hadoop 1.x had several limitations, but is still used a lot

- 'Apache Hadoop 2.x' consisted of significant improvements
- New Scheduler 'Hadoop YARN' with lots of configuration options (YARN = Yet Another Resource Negotiator: Map-reduce used beyond its idea)

HDFS Improvements

 Use multiple independent Namenodes/Namespaces as 'federated system' (addressing 'single point of failure')

Map-Reduce Improvements

- JobTracker functions are seperated into two new components (addressing 'single point of failure')
- New 'ResourceManager' manages the global assignment of compute resources to applications
- New 'ApplicationMaster' manages the application scheduling and coordination

[11] Hadoop 2.x

different scheduling policies can be configured

Apache Hadoop Key Configuration Overview

core-site.xml

```
<configuration>
< name>fs.default.name</name>
    <value>hdfs://localhost:9000</value>

</configuration>
```

mapred-site.xml

```
<configuration>
  <name>mapred.job.tracker</name>
  <value>hdfs://localhost:9001</value>

</configuration>
```

hdfs-site.xml

```
<configuration>
  < name>dfs.replication</name>
    <value>1</value>
    </property>
</configuration>
```


E.g. NameNode, Default status page: http://localhost:50070/

E.g. JobTracker, Default status page: http://localhost:50030/

- core-site.xml contains core properties of Hadoop (fs.default.name is just one example)
- hdfs-site.xml contains properties directly related to HDFS (e.g. dfs.replication is just one example)
- mapred-site.xml contains properties related to the map-reduce programming environment

Hadoop Selected Administration & Configuration (1)

Release Download

→ Check Webpage

- Well maintained, often new versions
- JobTracker, e.g. max. of map / reduce jobs per node

[7] Apache Hadoop

Hadoop Selected Administration & Configuration (2)


```
morris@login-O-O:~/bin/hadoop-1.2.1/conf
File Edit View Search Terminal Help
                                                                                                             conf/mapred-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!-- Put site-specific property overrides in this file. -->
<configuration>
cproperty>
<name>mapred.job.tracker</name>
<value>localhost:9001
</property>
</configuration>
                                                                                                             Version 2: JobTracker
                                                    cproperty>
                                                                                                             split: resource
                                                     <name>mapreduce.framework.name</name>
                                                                                                             management and job
                                                     <value>yarn</value>
                                                    </property>
                                                                                                             scheduling/monitoring
"mapred-site.xml" 11L, 262C
                                                                                Yarn for resource management
 conf/yarn-site.xml
                                                                                                     Shuffle service that needs to be set for Map Reduce applications.
                                                  mapreduce.shuffle
yarn.nodemanager.aux-services
                                                                                                     The exact name of the class for shuffle service
yarn.nodemanager.aux-services.
                                                  org.apache.hadoop.mapred.
mapreduce.shuffle.class
                                                  ShuffleHandler
                                                                                                     The address of the applications manager interface in the RM.
                                                  resourcemanager.company.com:8032
yarn.resourcemanager.address
                                                                                                     The address of the scheduler interface.
                                                  resourcemanager.company.com:8030
yarn.resourcemanager.
scheduler.address
```

Hadoop 1.2.1 Usage Examples


```
[morris@login-0-0 hadoop-1.2.1]$ ./bin/hadoop
Usage: hadoop [--config confdir] COMMAND
where COMMAND is one of:
                     format the DFS filesystem
 namenode -format
 secondarynamenode
                     run the DFS secondary namenode
 namenode
                     run the DFS namenode
 datanode
                     run a DFS datanode
 dfsadmin
                     run a DFS admin client
 mradmin
                     run a Map-Reduce admin client
  fsck
                     run a DFS filesystem checking utility
  fs
                     run a generic filesystem user client
 balancer
                     run a cluster balancing utility
                     apply the offline fsimage viewer to an fsimage
 oiv
  fetchdt
                     fetch a delegation token from the NameNode
                     run the MapReduce job Tracker node
 jobtracker
                     run a Pipes job
 pipes
                     run a MapReduce task Tracker node
 tasktracker
 historyserver
                     run job history servers as a standalone daemon
 job
                     manipulate MapReduce jobs
 aueue
                     get information regarding JobQueues
 version
                     print the version
 iar <iar>
                     run a jar file
 distcp <srcurl> <desturl> copy file or directories recursively
 distcp2 <srcurl> <desturl> DistCp version 2
 classpath
                     prints the class path needed to get the
                     Hadoop jar and the required libraries
 daemonlog
                     get/set the log level for each daemon
 CLASSNAME
                     run the class named CLASSNAME
Most commands print help when invoked w/o parameters.
```

/bin/hadoop jar hadoop-examples-1.2.1.jar wordcount DaVinciExample DaVinciExampleOutput

Apache Hadoop Architecture Elements

NameNode (and Secondary NameNode)

'Service' that has all information about the HDFS file system ('data nodes')

JobTracker (point of failure → no secondary instance!)

'Service' that 'farms out' map-reduce tasks to specific nodes in the cluster

TaskTracker (close to DataNodes, offering 'job slots' to submit to)

Entity in a node in the cluster that 'accepts/performs map-reduce tasks'

DataNode

- Part of the HDFS filesystem
- Responds to requests from the NameNode for

'filesystem operations'

Reliability & Fault-Tolerance in Map-Reduce (1)

- Users use the client application to submit jobs to the JobTracker
- 2. A JobTracker interacts with the NameNode to get data location
- 3. The JobTracker locates TaskTracker nodes with available slots at or near the data ('data locality principle')
- 4. The JobTracker submits the work to the chosen TaskTracker nodes

Reliability & Fault-Tolerance in Map-Reduce (2)

- 5. The TaskTracker nodes are monitored (ensure 'reliability')
 - 'Fault tolerance': If they do not submit heartbeat signals often enough, they are deemed to have failed & the work is given to different TaskTracker
- 6. The TaskTracker notifies the JobTracker when a task fails
 - The JobTracker decides next action: it may resubmit the job elsewhere or it may mark that specific record as something to avoid
 - The Jobtracker may may even 'blacklist the TaskTracker as unreliable'

- 7. When the work is completed, the JobTracker updates its status
- 8. Client applications can poll the JobTracker for information

Cluster Setups with Hadoop-On-Demand (HOD)

 Hadoop On Demand (HOD) is a specific Hadoop distribution for provisioning virtual Hadoop cluster deployments over a large physical cluster that is managed by a scheduler (i.e. Torque).

When to use?

A given physical cluster exists with nodes managed by scheduling system

'Semi-Automatic Deployment' approach

 HOD provisions and maintains Hadoop Map-Reduce and HDFS instances through interaction with several HOD components on given physical nodes

Performs cluster node allocation

- Starts Hadoop Map/Reduce and HDFS daemons on allocated nodes
- Makes it easy for administrators to quickly setup and use Hadoop

Includes automatic configurations

Generates configuration files for the Hadoop daemons and client

HOD Deployment on Different Cluster Node Types

Submit nodes

[27] HOD Architecture

 Users use the HOD client on these nodes to allocate 'cluster nodes' and use the Hadoop client to submit Map-Reduce jobs

Compute nodes

The resource manager runs HOD components on these nodes to provision the Hadoop daemons that enable Map-Reduce jobs

HOD Detailed Architecture Elements

Basic System Architecture of HOD includes:

Torque

- A Resource Manager & Scheduling system (i.e. Torque)
- Hadoop Map/Reduce and HDFS daemons need to run
- Various HOD components (HOD RingMaster, HOD Rings)

Map-Reduce Jobs

HOD RingMaster

hod ringmaster

- Starts as a process of the compute nodes (mother superior, in Torque)
- Uses a resource manager interface (pbsdsh, in Torque)
- Runs the HodRing as distributed tasks on the allocated compute nodes

HOD Rings

 Communicate with the HOD RingMaster to get Hadoop commands (e.g. new map-reduce jobs) and run them accordingly

hodring

- Once the Hadoop commands are started they register with the RingMaster, giving information about the daemons of the HOD Rings
- Since map-reduce version 2 HOD is deprected and YARN is the scheduler to be used instead

Hadoop Adoptions – In Industry

[19] IBM System @ Smart Data Innovation Lab

Closed Source Algorithms in Business Solutions (e.g. also IBM SPSS)

 Uptake of Hadoop in many different business environments, SMEs, etc.

Map-Reduce Deployment Models

- Map-Reduce deployments are particularly well suited for cloud computing deployments
- Deployments need still some useful map-reduce codes (cf. to MPI/OpenMP w/o their codes)

Options to move 'data to strong computing power' ...

... or move 'compute tasks close to data'

High Trust?

On-premise full custom

Data Privacy

Map-Reduce Appliance Map-Reduce Hosting Low Trust?

Map-Reduce As-A-Service

Bare-metal

Virtualized

Clouds

[23] Inspired by a study on Hadoop by Accenture

Data Analytics in the view of Open Data Science

Experience in investigation of available parallel data mining algorithms

Stable open source algorithms are still rather rare (Map-reduce, MPI/OpenMP, and GPGPUs)

Data Analytics with SVM – Algorithm Availability

Tool	Platform Approach	Parallel Support Vector Machine
Apache Mahout	Java; Apache Hadoop 1.0 (map-reduce); HTC	No strategy for implementation (Website), serial SVM in code
Apache Spark/MLlib	Apache Spark; HTC	Only linear SVM; no multi-class implementation
Twister/ParallelSVM	Java; Apache Hadoop 1.0 (map-reduce); Twister (iterations), HTC	Much dependencies on other software: Hadoop, Messaging, etc. Version 0.9 development
Scikit-Learn	Python; HPC/HTC	Multi-class Implementations of SVM, but not fully parallelized
piSVM	C code; Message Passing Interface (MPI); HPC	Simple multi-class parallel SVM implementation outdated (~2011)
GPU accelerated LIBSVM	CUDA language	Multi-class parallel SVM, relatively hard to program, no std. (CUDA)
pSVM	C code; Message Passing Interface (MPI); HPC	Unstable beta, SVM implementation outdated (~2011)

Lessons Learned – Hadoop & Map-Reduce

Be careful of investing time & efforts

- oc C
- Frameworks keep significantly fast changing, no peer-reviews as in HPC (e.g. Hadoop 1.0 → Hadoop 2.0, new move of community to Spark)
- Map-reduce basically standard, but not as stable as established MPI or OpenMP
- Hadoop 2.0 improvements with YARN to work in 'HPC scheduling environments'
- Consider and observe developments around Apache Spark

Solutions on-top-of Hadoop keep changing

- Many different frameworks are available on top of Hadoop
- Often business-driven developments (e.g. to be used in recommender systems)
- Data Analytics with Mahout have only a limited number of algorithms
 (E.g. Decision trees, collaborative filtering, no SVMs, no artifical neural networks)
- Data Analytics with Twister works, but limited algorithms
 (E.g. SVM v.0.9 works, but old development/research version, unmaintained)

Part Two – Questions

Part Two – Outline

Part One 'Big Data' Challenges & HPC Tools

- Understanding 'Big Data' in Science & Engineering
- Statistical Data Mining and Learning from 'Big Data'
- OpenMP/MPI Tool Example for Clustering 'Big Data'
- MPI Tool Example for Classification of 'Big Data'

coffee break

Part Two 'Big Data' & Distributed Computing Tools

- Exploring Parallel & Distributed Computing Approaches
- Examples of Map-Reduce & 'Big Data' Processing with Hadoop
- Tools for handling 'Big Data' storage & replication methods
- Technologies for Large-scale distributed 'Big Data' Management

Distributed File Systems vs. Parallel File Systems

Distributed File Systems

- Clients, servers, and storage devices are geographically dispersed among machines of a distributed system (often appear as 'single system')
- Manage access to files from multiple processes
- But generally treat 'concurrent access' as an unusual event
- E.g. Hadoop Distributed File System (HDFS) implementation

Parallel File Systems

- Deal with many problematic questions arising during 'parallel programming'
- E.g. How can hundreds or thousands of processes access the same file concurrently and efficiently?
- E.g. How should file pointers work?
- E.g. Can the UNIX sequential consistency semantics be preserved?
- E.g. How should file blocks be cached and buffered?

Hadoop Distributed File System (HDFS)

A 'specialized filesystem' designed for reliability and scalability

- Designed to run on 'comodity hardware'
- Many similarities with existing 'distributed file systems'
- Takes advantage of 'file and data replication concept'

Differences to traditional distributed file systems are significant

- Designed to be 'highly fault-tolerant' → improves dependability!
- Enables use with applications that have 'extremely large data sets'

Provides 'high throughput access' to application data

- HDFS relaxes a few POSIX requirements
- Enables 'streaming access' to file system data

Origin

HDFS was originally built as infrastructure for the 'Apache Nutch web search engine project'

[9] The Hadoop Distributed File System

HDFS Key Feature: File Replication Concept

File replication is a useful redundancy for improving availability and performance

Ideal: Replicas reside on 'failure-independent machines'

- Availability of one replica should not depend on availability of others
- Requires ability to place replica on particular machine
- 'Failure-independent machines' hard to find, but in 'system design' easier

Replication should be hidden from users

- But replicas must be distinguishable at lower level
- Different DataNode's are not visible to end-users

Replication control at higher level

 Degree of replication must be adjustable (e.g. Hadoop configuration files)

Modified from [10] Virtual Workshop

HDFS Master/NameNode

The master/name node is replicated

- A directory for the file system as a whole knows where to find the copies
- All participants using the DFS know where the directory copies are
- The Master/Name node keeps metadata (e.g. node knows about the blocks of files)

Modified from [10] Virtual Workshop

HDFS File Operations

Different optimized operations on different 'nodes'

NameNode

- Determines the mapping of 'pure data blocks' to DataNodes (→ metadata)
- Executes file system namespace operations
- E.g. opening, closing, and renaming files and directories

DataNode

- Serving 'read and write requests' from HDFS filesystem clients
- Performs block creation, deletion, and replication (upon instruction from the NameNode)

[10] Virtual Workshop

HDFS File/Block(s) Distribution Example

Block Replication

Namenode (Filename, numReplicas, block-ids, ...)
/users/sameerp/data/part-0, r:2, {1,3}, ...
/users/sameerp/data/part-1, r:3, {2,4,5}, ...

Datanodes

[9] The Hadoop Distributed File System

Working with HDFS

HDFS can be deployed in conjunction with another filesystem

But HDFS files are not directly accessible via the 'normal file system'

'Normal User' Commands

- Create a directory named /foodir
 e.g. bin/hadoop dfs -mkdir /foodir
- View the contents of a file named /foodir/myfile.txt e.g. bin/hadoop dfs -cat /foodir/myfile.txt

Administrator Commands

- Generate a list of DataNodes
 e.g. bin/hadoop dfsadmin -report
- Decommission DataNode datanodename (e.g. maintenance/check reasons)
 e.g. bin/hadoop dfsadmin –decommission datanodename

[9] The Hadoop Distributed File System

HDFS Selected Administration & Configuration (1)

Release Download

- Well maintained, often new versions
- Add/remove nodes dynamically
- Namenode

HDFS Selected Administration & Configuration (2)


```
morris@login-0-0:~/bin/hadoop-1.2.1/conf
File Edit View Search Terminal Help
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!-- Put site-specific property overrides in this file. -->
<configuration>
property>
 <name>fs.default.name</name>
 <value>hdfs:login-0-0.local:9000</value>
</property>
</configuration>
                                                                                                                             conf/core-site.xml
"core-site.xml" 11L, 274C
                                                                      morris@login-O-O:~/bin/hadoop-1.2.1/conf
File Edit View Search Terminal Help
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!-- Put site-specific property overrides in this file. -->
                                                                                                                             conf/hdfs-site.xml
<configuration>
property>
<name>dfs.replication</name>
<value>1</value>
</property>
</configuration>
"hdfs-site.xml" 11L, 246C
```

HDFS Usage Examples

/bin/hadoop dfs -copyFromLocal ~/BIGDATA/DaVinciExample DaVinciExample [morris@login-0-0 hadoop-1.2.1]\$ vi dfsworkminingcourse.sh [morris@login-0-0 hadoop-1.2.1]\$ ls ~/BIGDATA/DaVinciExample eclipseoutput part-r-00000 pq5000.txt [morris@login-0-0 hadoop-1.2.1]\$./dfsworkminingcourse.sh [morris@login-0-0 hadoop-1.2.1]\$./bin/hadoop dfs -ls Found 1 items 0 2013-09-06 10:53 /user/morris/DaVinciExample - morris supergroup drwxr-xr-x linux-8djq:/home/adminuser/bin/hadoop-1.2.1 # ./bin/hadoop namenode -format 13/09/05 18:15:00 INFO namenode.NameNode: STARTUP MSG: STARTUP MSG: Starting NameNode STARTUP MSG: host = linux-8djg.site/127.0.0.1 STARTUP MSG: args = [-format] STARTUP MSG: version = 1.2.1 STARTUP MSG: build = https://svn.apache.org/repos/asf/hadoop/common/branches/branch-1.2 -r 1503152; compiled by 'mattf' on Mon Jul 22 15:23:09 PDT 2013 STARTUP MSG: java = 1.7.015Re-format filesystem in /tmp/hadoop-root/dfs/name ? (Y or N) Y 13/09/05 18:15:04 INFO util.GSet: Computing capacity for map BlocksMap 13/09/05 18:15:04 INFO util.GSet: VM type 13/09/05 18:15:04 INFO util.GSet: 2.0% max memory = 1013645312 13/09/05 18:15:04 INFO util.GSet: capacity $= 2^21 = 2097152$ entries 13/09/05 18:15:04 INFO util.GSet: recommended=2097152, actual=2097152 13/09/05 18:15:05 INFO namenode.FSNamesystem: fs0wner=root 13/09/05 18:15:05 INFO namenode.FSNamesystem: supergroup=supergroup 13/09/05 18:15:05 INFO namenode.FSNamesystem: isPermissionEnabled=true 13/09/05 18:15:05 INFO namenode.FSNamesystem: dfs.block.invalidate.limit=100 13/09/05 18:15:05 INFO namenode.FSNamesystem: isAccessTokenEnabled=false accessKeyUpdateInterval=0 min(s), accessTokenLifetime=0 min(s) 13/09/05 18:15:05 INFO namenode.FSEditLog: dfs.namenode.edits.toleration.length = 0 13/09/05 18:15:05 INFO namenode.NameNode: Caching file names occuring more than 10 times 13/09/05 18:15:05 INFO common.Storage: Image file /tmp/hadoop-root/dfs/name/current/fsimage of size 110 bytes saved in 0 seconds. 13/09/05 18:15:05 INFO namenode.FSEditLog: closing edit log: position=4, editlog=/tmp/hadoop-root/dfs/name/current/edits 13/09/05 18:15:05 INFO namenode.FSEditLog: close success: truncate to 4, editlog=/tmp/hadoop-root/dfs/name/current/edits 13/09/05 18:15:05 INFO common.Storage: Storage directory /tmp/hadoop-root/dfs/name has been successfully formatted. 13/09/05 18:15:05 INFO namenode.NameNode: SHUTDOWN MSG: SHUTDOWN MSG: Shutting down NameNode at linux-8djq.site/127.0.0.1

HDFS & Hadoop Map-Reduce Ecosystem

What your users Want to do with map-reduce?

Administration & deployment experience – hard to get versions in sync and maintain updates

Lessons Learned – HDFS

Be careful of investing time & efforts

- Frameworks keep significantly fast changing, no peer-reviews as in HPC (e.g. HDFS is part of the changing Hadoop series)
- Large-scale deployments of HDFS rather in business than in scientific production (e.g. 2-3 times replication of scientific data on active disks usually not affordable)
- Consider and observe developments around Apache Spark

Comparisons with HPC Centers & usual parallel filesystems

- Deployments together with parallel filesystems are not straightforward (e.g. IBM works still on Watson and GPFS integration for its Hadoop stacks)
- HPC centers with parallel filesystems often have large backend storage too (e.g. single site vs. map-reduce HDFS idea of different sites)
- Parallel I/O and high-level libraries like HDF5 or pNetCDF are very scalable (e.g. tool support and integration straightforward, de-facto-standards, etc.)

Part Two – Questions

Part Two – Outline

Part One 'Big Data' Challenges & HPC Tools

- Understanding 'Big Data' in Science & Engineering
- Statistical Data Mining and Learning from 'Big Data'
- OpenMP/MPI Tool Example for Clustering 'Big Data'
- MPI Tool Example for Classification of 'Big Data'

coffee break

Part Two 'Big Data' & Distributed Computing Tools

- Exploring Parallel & Distributed Computing Approaches
- Examples of Map-Reduce & 'Big Data' Processing with Hadoop
- Tools for handling 'Big Data' storage & replication methods
- Technologies for Large-scale distributed 'Big Data' Management

Emerging Spark Platform

- Apache Spark offers scalable machine learning and data mining algorithms
- Supports Scala, Java and Python and runs in parallel using map-reduce

Selected Facts

- Machine learning library (in development, v.0.9)
- Offers flexible execution platform that can take advantage of Apache Hadoop using map&reduce

[20] Apache Spark Webpage

- Basic statistics for summary statistics
- Classification and regression with linear models with Support Vector Machines, logistic regression, linear regression
- Classification with decision trees and naive Bayes
- Collaborative filtering using alternating least squares
- Clustering using K-Means
- Dimensionality reduction with Principle Component Analysis (PCA) and Singular Value Decomposition (SVD)

Tools for Large-scale Distributed Data Management

[25] M. Riedel & P. Wittenburg et al.

Useful tools for data-driven scientists & HPC users

Need for Sharing & Reproducability in HPC – Example

Smart Data Analytics Process

Reproducability Example in Data-driven Science (1)

- Having this tool available on the Web helps tremendously to save time for no research tasks
- Using the tool enables to focus better on the research tasks

Reproducability Example in Data-driven Science (2)

Reproducability Example in Data-driven Science (3)

Simple download from http using the wget command


```
mriedel@judge:~/bigdata> ls -al
      total 640
                                   32768 2014-09-17 22:20
      drwxrwxrwx 21 mriedel
                              zam
      drwxr-xr-x 19 mriedel
                              zam
                                   32768 2014-09-18 11:49 . .
                                   32768 2014-06-19 07:17 102-salinasindian
      drwxr-xr-x 2 mriedel
                              zam
                                     512 2014-06-19 20:11 107-salinasrescaled
                   2 mriedel
      drwxr-xr-x
                              zam
                                                                                       ...other
                                     512 2014-07-08 17:14 111-romemultispectral
      drwxr-xr-x
                   2 mriedel
                              zam
                                     512 2014-07-10 11:46 112-romeoriginalbands
      drwxr-xr-x 2 mriedel
                                                                                       open
                              zam
                                     512 2014-09-17 22:31 120-indianpine
                                                                                     B2SHARE
      drwxr-xr-x
                   2 mriedel
                              zam
      drwxr-xr-x
                   2 mriedel
                              zam
                                     512 2014-09-17 22:14 121-salinas
                                                                                      datasets
                                     512 2014-09-17 22:19 122-salinas2
                   2 mriedel
      drwxr-xr-x
                              zam
                                     512 2014-09-17 22:24 123-indianpine2
                  2 mriedel
                              zam
                                     512 2014-07-09 11:03 86-romeok
      drwxr-xr-x 2 mriedel
                                   32768 2014-06-10 18:51 bigindianpines
      drwxr-xr-x
                  2 mriedel
                              zam
                     mriedel
                              zam
                                   32768 2014-05-28 10:59 indian
Simple
                     mriedel
                                   32768 2014-06-10 20:48 indianpinesreduced
                              zam
Download
                     mriedel
                                     512 2014-07-28 17:53 mnist-576-rbf
                              zam
                     skoehnen inm1
                                     512 2014-07-29 16:35
from http
                              zam 32768 2014-06-25 11:09 rome-ok
                     mriedel
using wget
                                     512 2014-07-08 13:29 rome-ok-copy
                     mriedel
                              zam
                                   32768 2014-06-03 14:24 salinas
                     mriedel
                              zam
                                                                                ...before adopting
Well defined
                     mriedel
                                   32768 2014-06-16 16:50 salinasindianrev
                              zam
                                                                               B2SHARE regularly
directory
                     mriedel
                                   32768 2014-06-10 15:47 salinas-new
                              zam
structures
```

Reproducability Example in Data-driven Science (4)

Make a short note in your directory linking back to B2SHARE

- Enables the trust to delete data if necessary (working against big data)
- Link back to B2SHARE for quick checks and file that links back fosters trust

Reproducability Example in Data-driven Science (5)


```
mriedel@judge:~> ls -al
total 111840
drwxr-xr-x 19 mriedel zam
                                32768 2014-09-18 11:49 .
                                32768 2014-09-12 09:02 ...
drwxr-xr-x 214 root
                        SVS
             1 mriedel zam 113233920 2014-08-08 10:35 115-RunsMatthiasStable.tar ... a bachelor project
-rw-r--r--
drwxr-xr-x
             3 mriedel zam
                                32768 2014-06-03 16:24 ann-0.1
drwxr-xr-x
             3 mriedel zam
                                32768 2014-06-03 17:02 ann-0.2
                                                                           ... different versions of a
             3 mriedel zam
drwxr-xr-x
                                32768 2014-06-04 14:42 ann-0.3
                                                                          parallel neural network code
                                32768 2014-06-16 19:12 ann-0.4
             2 mriedel zam
drwxr-xr-x
                                                                             (another classification
drwxr-xr-x
            2 mriedel zam
                                32768 2014-06-16 19:24 ann-0.4-orig
drwxr-xr-x
            2 mriedel zam
                                32768 2014-06-19 08:38 ann-0.5
                                                                                 technique)
                                32768 2014-06-25 00:52 ann-0.6
drwxr-xr-x
             6 mriedel zam
                                32768 2014-06-19 16:31 ann-0.6-scal
drwxr-xr-x
             4 mriedel zam
drwxr-xr-x
             2 mriedel zam
                                32768 2014-06-24 17:02 ann-0.7
             1 mriedel zam
                                 1797 2014-05-12 13:51 .bashrc
- rw - - - - - -
drwx rwx rwx
            21 mriedel zam
                                32768 2014-09-17 22:20
                                  512 2014-06-19 09:34 .config
drwxr-xr-x
            3 mriedel zam
drwxr-xr-x
             3 mriedel zam
                                32768 2014-06-03 14:38
- rw - - - - - -
             1 mriedel zam
                                 1864 2014-05-12 13:51 .kshrc
                                                                                ... different versions of a
             3 mriedel zam
                                32768 2014-05-12 14:56 pisym-1.2
drwxr-xr-x
                                                                                       parallel
             5 mriedel zam
                                32768 2014-09-18 11:49 pisvm-1.2.1
drwxr-xr-x
                                                                                support vector machine
                                  512 2014-07-09 14:51 pisvm-1.2-refactored
drwxr-xr-x
             3 mriedel zam
                                 2686 2014-05-12 13:51 .profile
                                                                                        code
             1 mriedel zam
                                22490 2014-09-18 11:51 .sh history
             1 mriedel zam
                                32768 2014-05-12 14:38 .ssh
             2 mriedel zam
drwx - - - - -
             2 mriedel zam
                                      2014-05-12 14:39 transfers
drwxr-xr-x
                                19526 2014-09-18
             1 mriedel zam
                                                       True reproducability needs: (1) datasets;
                                  204 2014-09-17
             1 mriedel zam
- rw - - - - - -
                                                       (2) technique parameters (here for SVM);
mriedel@judge:~>
                                                       and (3) correct versions of algorithm code
```

Distributed Large-scale Data Management & Execution

[21] UNICORE.eu

In-Situ Analytics for HPC & Exascale

[21] Inspired by ASCAC DOE report

Part Two – Questions

References

References (1)

- [1] Jeremy Ginsburg et al., 'Detecting influenza epidemics using search engine query data', Nature 457, 2009
- [2] David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani, 'The Parable of Google Flu: Traps in Big Data Analysis', Science Vol (343), 2014
- [3] Science Progress, Online: http://scienceprogress.org/2009/11/dna-confidential/
- [4] Introduction to High Performance Computing for Scientists and Engineers, Georg Hager & Gerhard Wellein, Chapman & Hall/CRC Computational Science, ISBN 143981192X
- [5] Introduction to Parallel Computing Tutorial,

Online: https://computing.llnl.gov/tutorials/parallel_comp/

[6] MapReduce: Simplified Dataset on Large Clusters, J. Dean and S. Ghemawat, 6th Symposium on Operating Systems Design and Implementation,

Online: https://www.usenix.org/legacy/event/osdi04/tech/full_papers/dean/dean.pdf

- [7] Apache Hadoop, Online: http://hadoop.apache.org/
- [8] Mining of Massive Datasets, Online: http://infolab.stanford.edu/~ullman/mmds/book.pdf
- [9] Dhruba Borthakur, 'The Hadoop Distributed File System: Architecture and Design',

Online: http://hadoop.apache.org/docs/r0.18.0/hdfs_design.pdf

[10] Stampede Virtual Workshop,

Online: http://www.cac.cornell.edu/Ranger/MapReduce/dfs.aspx

[11] Hadoop Release 2.2.0, Online: http://hadoop.apache.org/docs/r2.2.0/

[12] 'Study on Parallel SVM Based on MapReduce', Zhanquan Sun and Geoffrey Fox, Online: http://grids.ucs.indiana.edu/ptliupages/publications/Study%20on%20Parallel%20SVM%20Based%20on%20MapReduce.pdf

References (2)

- [13] Twister Iterative Map-Reduce, Online: http://www.iterativemapreduce.org/
- [14] Brandyn White et al., 'Web-Scale Computer Vision using MapReduce for Multimedia Data Mining', Online: http://dl.acm.org/citation.cfm?doid=1814245.1814254
- [15] 'Study on Parallel SVM Based on MapReduce', Zhanquan Sun and Geoffrey Fox, Online: http://grids.ucs.indiana.edu/ptliupages/publications/Study%20on%20Parallel%20SVM%20Based%20on%20MapReduce.pdf
- [16] Hadoop Distributed Cache, Online:
- https://hadoop.apache.org/docs/r1.0.4/api/org/apache/hadoop/filecache/DistributedCache.html
- [17] FutureGrid/FutureSystems Uolceland Teaching Project,
- online: https://portal.futuregrid.org/projects/358
- [18] FutureGrid/FutureSystems WordCount Example, online: https://portal.futuregrid.org/manual/hadoop-wordcount
- [19] Smart Data Innovation Lab (SDIL),
- online: http://www.sdil.de/de/
- [20] Apache Spark MLlib Webpage, online: https://spark.apache.org/mllib/
- [21] DoE ASCAC Report, 2013
- [22] UNICORE middleware, online: http://www.unicore.eu/
- [23] Study on Hadoop, Accenture
- [24] Shearer C., 'The CRISP-DM model: the new blueprint for data mining', J Data Warehousing (2000); 5:13—22.
- [25] M. Riedel and P. Wittenburg et al. 'A Data Infrastructure Reference Model with Applications: Towards Realization of a ScienceTube Vision with a Data Replication Service', 2013
- [26] Einführung in Hadoop (German language, sorry), online: http://blog.codecentric.de/2013/08/einfuhrung-in-hadoop-teil-3-von-5/
- [27] HOD Architecture, online: http://www.informit.com/articles/article.aspx?p=2190193&seqNum=4

Acknowledgements

PhD Student Gabriele Cavallaro, University of Iceland Tómas Philipp Runarsson, University of Iceland Kristján Jonasson, University of Iceland

Markus Axer, Stefan Köhnen, Tim Hütz, Institute of Neuroscience & Medicine, Juelich

Selected Members of the Research Group on High Productivity Data Processing

Ahmed Shiraz Memon Mohammad Shahbaz Memon Markus Goetz Christian Bodenstein Philipp Glock Matthias Richerzhagen

Thanks

Slides available at http://www.morrisriedel.de/talks