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Introduction to Big Data in HPC, Hadoop and HDFS

Overall Course Outline

Part One ‘Big Data‘ Challenges & HPC Tools
 Understanding ‘Big Data‘ in Science & Engineering
 Statistical Data Mining and Learning from ‘Big Data‘
 OpenMP/MPI Tool Example for Clustering ‘Big Data‘
 MPI Tool Example for Classification of ‘Big Data‘

coffee break

Part Two ‘Big Data‘ & Distributed Computing Tools
 Exploring Parallel & Distributed Computing Approaches
 Examples of Map-Reduce & ‘Big Data‘ Processing with Hadoop
 Tools for handling ‘Big Data‘ storage & replication methods
 Technologied for Large-scale distributed ‘Big Data‘ Management
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Introduction to Big Data in HPC, Hadoop and HDFS

Part Two – Outline 

Part One ‘Big Data‘ Challenges & HPC Tools
 Understanding ‘Big Data‘ in Science & Engineering
 Statistical Data Mining and Learning from ‘Big Data‘
 OpenMP/MPI Tool Example for Clustering ‘Big Data‘
 MPI Tool Example for Classification of ‘Big Data‘

coffee break

Part Two ‘Big Data‘ & Distributed Computing Tools
 Exploring Parallel & Distributed Computing Approaches
 Examples of Map-Reduce & ‘Big Data‘ Processing with Hadoop
 Tools for handling ‘Big Data‘ storage & replication methods
 Technologies for Large-scale distributed ‘Big Data‘ Management
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Data Analysis supports the search for ‘causality’
 Describing exactly WHY something is happening
 Understanding causality is hard and time-consuming
 Searching it often leads us down the wrong paths

Big Data Analytics focussed on ‘correlation’
 Not focussed on causality – enough THAT it is happening
 Discover novel patterns/events and WHAT is happening more quickly
 Using correlations for invaluable insights – often data speaks for itself

Emerging Big Data Analytics vs. Traditional Data Analysis

 Data Analytics are powerful techniques to work on large data
 Data Analysis is the in-depth interpretation of research data
 Both are a complementary technique for understanding datasets
 Data analytics may point to interesting ‚events‘ for data analysis

Data
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Google Flu Analytics – Hype vs. (Scientific) Reality

2009 – H1N1 Virus made headlines
 Nature paper from Google employees
 Explains how Google is able to predict flus
 Not only national scale, but down to regions even
 Possible via logged big data – ‘search queries‘

2014 – The Parable of Google Flu 
 Large errors in flu prediction were avoidable 

and offer lessons for the use of big data
 (1) Transparency and Replicability impossible
 (2) Study the Algorithm since they keep changing 
 (3) It’s Not Just About Size of the Data

~1998-today

[1] Jeremy Ginsburg et al., ‘Detecting influenza epidemics 
using search engine query data’, Nature 457, 2009

[1] David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani, 
‘The Parable of Google Flu: Traps in Big Data Analysis’, Science Vol (343), 2014
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Modern Data Mining Applications

Properties  opportunity to exploit ‘parallelism’
 Require handling of immense amounts of data quickly
 Provide data that is extremely regular and can be independently processed

Examples from the Web
 Ranking of Web pages by importance

(includes iterated matrix-vector multiplication)
 Searches in social networking sites

(includes search in graph with 
hundreds of nodes/billions of edges)

Major difference to typical HPC workload
 Not simulation of physical phenomena

 Many modern data mining applications require computing on compute nodes 
(i.e. processors/cores) that operate independently from each other

 Independent means there is little or even no communication between tasks
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Hiding the complexity of computing & data

Many users of parallel data processing machines are 
not technical savvy users and don’t need to know system details
 Scientific domain-scientists (e.g. biology) 

need to focus on their science & data
 Scientists from statistics/machine-learning 

need to focus on their algorithms & data

Non-technical users raise the following 
requirements for a ‘data processing machinery’:

 The ‘data processing machinery’ needs to be easy to program 
 The machinery must hide the complexities of computing

(e.g. different networks, various operating systems, etc.)
 It needs to take care of the complexities of parallelization 

(e.g. scheduling, task distribution, synchronization, etc.)

[3] Science Progress
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‘Data Processing Machinery’ Available Today

Specialized Parallel Computers (aka Supercomputers)
 Interconnent between nodes is expensive (i.e. Infiniband/Myrinet)
 Interconnect not always needed in

data analysis (independence in datasets)
 Programming is relatively difficult/specific,

parallel programming is profession of its own

Large ‘compute clusters’ dominate data-intensive computing
 Offer ‘cheaper’ parallelism (no expensive 

interconnect & switches between nodes)
 Compute nodes (i.e. processors/cores) 

interconnected with usual ethernet cables
 Provide large collections of commodity 

hardware (e.g. normal processors/cores)
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Possible Failures during Operation

Reasons for failures
 Loss of a single node within a rack 

(e.g. hard disk crash, memory errors)
 Loss of an entire rack (e.g. network issues)
 Operating software ‘errors/bugs’

Consequences of failures
 Long-running compute tasks (e.g. hours/days) need to be restarted
 Already written data may become inconsistent and needs to be removed
 Access to unique datasets maybe hindered or even unavailable

 Rule of thumb: The bigger the cluster is, the more frequent failures happen
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Two Key Requirements for Big Data Analytics

Taking into account the ever-increasing amounts of ‘big data’
 Think: ‘Big Data’ not always denoted by volume, there is velocity, variety, …

1. Fault-tolerant and scalable data analytics processing approach
 Data analytics computations must be divided in small task for easy restart
 Restart of one data analytics task has no affect on other active tasks
 E.g. Hadoop implementation of the map-reduce paradigm

2. Reliable scalable ‘big data’ storage method
 Data is (almost always) accessible even if failures in nodes/disks occur
 Enable the access of large quantities of data with good performance
 E.g. Hadoop Distributed File System (HDFS) implementation

 A specialized distributed file system is required that assumes failures as default

 A data analytics processing programming model is required that is easy to use 
and simple to program with fault-tolerance already within its design
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Part Two – Questions 
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Part Two – Outline 

Part One ‘Big Data‘ Challenges & HPC Tools
 Understanding ‘Big Data‘ in Science & Engineering
 Statistical Data Mining and Learning from ‘Big Data‘
 OpenMP/MPI Tool Example for Clustering ‘Big Data‘
 MPI Tool Example for Classification of ‘Big Data‘

coffee break

Part Two ‘Big Data‘ & Distributed Computing Tools
 Exploring Parallel & Distributed Computing Approaches
 Examples of Map-Reduce & ‘Big Data‘ Processing with Hadoop
 Tools for handling ‘Big Data‘ storage & replication methods
 Technologies for Large-scale distributed ‘Big Data‘ Management
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Motivation: Increasing complexities in traditional HPC

 Different HPC Programming elements (barriers, mutexes, shared-/distributed memory, etc.)
 Task distribution issues (scheduling, synchronization, inter-process-communication, etc.)
 Complex heterogenous architectures (UMA, NUMA, hybrid, various network topologies, etc.)
 Data/Functional parallelism approaches (SMPD, MPMD, domain decomposition, ghosts/halo, etc. )

[5] Parallel Computing Tutorial

[4] Introduction to High Performance Computing for Scientists and Engineers

 More recently, increasing complexity for scientists working with GPGPU solutions (e.g. CUDA, etc.)
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Inspired by Traditional Model in Computer Science

Break ‘big tasks’ in many sub-tasks and aggregate/combine results

Divide & Conquer

P1 P2 P3

Problem

Result

Worker WorkerWorker

1

2

partition

combine

 (1) Partition the whole problem space
 (2) Combine the partly solutions of each 

partition to a whole solution of the problem
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Origins of the Map-Reduce Programming Model

Origin: Invented via the proprietary 
Google technology by Google technologists
 Drivers: Applications and ‘data mining 

approaches’ around the Web
 Foundations go back to 

functional programming (e.g. LISP)

Established ‘open source community’
 Apache Hadoop in production (mostly business)
 Open Source Implementation of the 

‘map-reduce’ programming model
 Based on Java programming language
 Broadly used – also  by commercial vendors within added-value software
 Foundation for many higher-level algorithms, frameworks, and approaches

[6] MapReduce: Simplified Dataset 
on Large Clusters, 2004

[7] Apache Hadoop
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Map-Reduce Programming Model

Enables many ‘common calculations easily’ on large-scale data 
 Efficiently performed on computing clusters (but security critics exists)

Offers system that is tolerant of hardware failures in computation
Simple Programming Model
 Users need to provide two functions Map & Reduce with key/value pairs
 Tunings are possible with numerous configurations & combine operation

Key to the understanding: The Map-Reduce Run-Time
 Three phases – not just ‘map-reduce’

 Takes care or the partitioning of input data and the communication
 Manages parallel execution and performs sort/shuffle/grouping
 Coordinates/schedules all tasks that either run Map and Reduce tasks
 Handles faults/errors in execution and re-submit tasks

 Experience from Practice: Talk to your users what they want to do with 
map-reduce exactly – algorithm implemented, developments?
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Understanding Map-[Sort/Shuffle/Group]-Reduce

Modified from [8] Mining of Massive Datasets

done by the
framework!
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Key-Value Data Structures

Two key functions to program by user: map and reduce

Third phase ‘sort/shuffle’ works with keys and sorts/groups them

Input keys and values (k1,v1) are drawn from a different domain 
than the output keys and values (k2,v2)

Intermediate keys and values (k2,v2) are from the same domain as 
the output keys and values

 map (k1,v1)  list(k2,v2)
 reduce (k2,list(v2))  list(v2)
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Key-Value Data Structures Programming Effort

[6] MapReduce: Simplified Dataset 
on Large Clusters, 2004

 map (k1,v1)  list(k2,v2)
 reduce (k2,list(v2))  list(v2)

// counting words example

map(String key, String value):
// key: document name
// value: document contents 

for each word w in value: 
EmitIntermediate(w, "1");

// the framework performs sort/shuffle
// with the specified keys

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);
Emit(AsString(result));

 Key-Value pairs are implemented
as Strings in this text-processing
example for each function and as 
‘Iterator’ over a list

 Goal: Counting the number of each 
word appearing in a document (or 
text-stream more general)

 Map (docname, doctext)
list (wordkey, 1), …

 Reduce (wordkey, list (1, …))
list (numbercounted)
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Map-Reduce Example: WordCount
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Map-Reduce on FutureGrid/FutureSystems

Transition Process FutureGrid/FutureSystems
 Affects straightforward use, but elements remain
 Contact m.riedel@fz-juelich.de if interested

UoIceland Teaching Project
 Apply for an account
 Upload of SSH is necessary

Close to real production environment
 Batch system (Torque) for scheduling

myHadoop  Torque
 Is a set of scripts that configure 

and instantiate Hadoop as a batch job
 myHadoop is currently 

installed on four different systems
 Alamo, Hotel, India, Sierra

[17] FutureGrid/FutureSystems 
UoIceland Teaching Project

[18] FutureGrid/FutureSystems 
Submit WordCount Example
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Further Map-Reduce example: URL Access

Very similar to the WordCount example is the following one:

Count of URL Access Frequency (‘How often people use a page’)
 Google (and other Web organizations) store billions of logs (‘information’)
 Users independently click on pages or follow links  nice parallelization 
 Map function here processes logs of Web page requests  (URL, 1)
 Reduce function adds togeter all values for same URL  (URL, N times)

[6] MapReduce: Simplified Dataset on Large Clusters

 Many examples and applications are oriented towards processing
large quantities of ‘Web data text’ 

 Examples are typically not scientific datasets or
contents of traditional business warehouse databases
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Communication in Map-Reduce Algorithms

Greatest cost in the communication of a map-reduce algorithm
Algorithms often trade communication cost against degree of 
parallelism and use principle of ‘data locality’ (use less network)

Modified from [6] MapReduce: 
Simplified Dataset on Large Clusters

 Data locality means that network 
bandwidth is conserved by taking 
advantage of the approach that the 
input data (managed by DFS) is stored 
on (or very near, e.g. same network 
switch) the local disks of the machines 
that make up the computing clusters

Taking
‘data locality’

into account
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Map-Reduce Optimizations – Local Combiner

 The Map-Reduce programming model is based on Mapper, Combiner, Partitioner, and Reducer 
functionality supported by powerful shuffle/sort/aggregation of keys by the framework

modified from [14] Computer Vision using Map-Reduce

 Mapper functionality is applied 
to input data and computes 
intermediate results in a 
distributed fashion

 Reduce functionality is applied 
to intermediate input data from 
the Map-Phase and aggregates 
it for results

‘Map
Phase’

‘Reduce
Phase’

 (local) Combiner functionality is 
applied in-memory to Map 
outputs and performs local 
aggregation of its results

 Partitioner determines to which 
reducer intermediate data is 
shuffled (cf. Computer Vision)
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Not every problem can be solved with Map-Reduce

Example: Amazon Online retail sales
 Requires a lot of updates on their product databases on each user action

(a problem for the underlying file system optimization)
 Processes that involve ‘little calculation’ but still change the database
 Employs thousands of computing nodes and offers them (‘Amazon Cloud’)
 (maybe they using map-reduce for certain analytics: buying patterns)

 Map-Reduce is not a solution to every parallelizable problem
 Only specific algorithms benefit from the map-reduce approach
 No communication-intensive parallel tasks (e.g. PDE solver) with MPI
 Applications that require often updates of existing datasets (writes)
 Implementations often have severe security limitations (distributed)

[8] Mining of Massive Datasets
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Map-Reduce Limitation: Missing some form of ‘State’

What if ‘values depend on previously computed values’?
‘Map-Reduce runs’ map & reduce tasks in parallel and finishes
 Problematic when result of one ‘Map-Reduce run’ is 

influencing another ‘Map-Reduce run iteration’  ‘state’? STST

[15] ‘Study on Parallel SVM Based on MapReduce’ 

MAP

REDUCEREDUCE
MAP

REDUCE REDUCE
MAP

REDUCE

sample data 
loaded from local 
file system according 
to partition file 

training samples
are support vectors 
of former layer 

time

Iterations
with
decrease
of map
&
reduce 
tasks

STOPTrained 
classifier
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The Need for Iterative Map-Reduce

‘Map-Reduce’ runs map and 
reduce tasks and finishes

modified from [12] Z. Sun et al.

 Many parallel algorithms are 
‘iterative in nature’ 

 Example from many application fields 
such as data clustering, dimension 
reduction, link analysis, or machine 
learning

 ‘Iterative Map-Reduce’ enables 
algorithms with same Map-Reduce 
tasks ideas, but added is a loop to 
perform iterations until conditions are 
satisfied

 The transfer of ‘states’ from one iteration 
to another iteration is specifically 
supported in this approach
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Iterative Map-Reduce with Twister

MapReduce jobs are controlled 
by the ‘Client node’
 Via a multi-step process

Configuration phase: The Client…
 … assigns Map-Reduce methods to the job
 … prepares KeyValue pairs 
 … prepares ‘static data’ for Map-Reduce tasks 

(through the partition file) if required

Running phase: The Client…
 … between iterations receives results collected by the ‘combine method’
 … exits gracefully when the job is done (check condition)

Message communication between jobs
 Realized with ‘message brokers’, i.e. NaradaBrokering or ActiveMQ

[13] Twister Web page
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Overview: Iterative Map-Reduce with Twister

[13] Twister Web page

STST

= state over
iterations!
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Distribute ‘Small State’ with Distributed Cache

Mappers need to read ‘state’ from a single file (vs. data chunks)
Example: Distributed spell-check application
 Every Mapper reads same copy of the dictionary before processing docs 
 Dictionary (‘state’) is small (~ MBs), but all nodes need to reach it

Solution: Hadoop provides ‘DistributedCache’
 Optimal to contain ‘small files’

needed for initialization (or shared libraries even)
 ‘State’ (or input data= needed 

on all nodes of the cluster
 Simple use with Java ‘DistributedCache Class’
 Method ‘AddCacheFile()’ add names of 

files which should be sent to all nodes on 
the system (need to be in HDFS) by
the framework

STST = state of  data per 
iteration or small data
required by every node

[16] Hadoop Distributed Cache
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Hadoop 2.x vs. Hadoop 1.x Releases

Apache Hadoop 1.x had several limitations, but is still used a lot
 ‘Apache Hadoop 2.x’ consisted of significant improvements
 New Scheduler ‘Hadoop YARN’ with lots of configuation options

(YARN = Yet Another Resource Negotiator: Map-reduce used beyond its idea)

HDFS Improvements
 Use multiple independent Namenodes/Namespaces as 

‘federated system’ (addressing ‘single point of failure’)

Map-Reduce Improvements
 JobTracker functions are seperated into 

two new components
(addressing ‘single point of failure’)
 New ‘ResourceManager’ manages the global 

assignment of compute resources to applications 
 New ‘ApplicationMaster’ manages 

the application scheduling and coordination

[11] Hadoop 2.x
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Apache Hadoop Key Configuration Overview

core-site.xml

 core-site.xml contains core properties of Hadoop (fs.default.name is just one example)
 hdfs-site.xml contains properties directly related to HDFS (e.g. dfs.replication is just one example)
 mapred-site.xml contains properties related to the map-reduce programming environment

<configuration> 
<property>
<name>fs.default.name</name> 
<value>hdfs://localhost:9000</value>

</property> 
</configuration> 

<configuration> 
<property>
<name>fs.default.name</name> 
<value>hdfs://localhost:9000</value>

</property> 
</configuration> 

<configuration> 
<property>

<name>dfs.replication</name> 
<value>1</value>

</property> 
</configuration> 

<configuration> 
<property>

<name>dfs.replication</name> 
<value>1</value>

</property> 
</configuration> 

<configuration> 
<property>
<name>mapred.job.tracker</name> 
<value>hdfs://localhost:9001</value>

</property> 
</configuration> 

<configuration> 
<property>
<name>mapred.job.tracker</name> 
<value>hdfs://localhost:9001</value>

</property> 
</configuration> 

NameNode

JobTracker

E.g. NameNode, Default status page: 
http://localhost:50070/

E.g. JobTracker, Default status page: 
http://localhost:50030/

hdfs-site.xml

mapred-site.xml
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Hadoop Selected Administration & Configuration (1)

Release Download
 Well maintained, often new versions
 JobTracker, e.g. max. of map / reduce jobs per node

 Check Webpage
[7] Apache Hadoop
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Hadoop Selected Administration & Configuration (2)

conf/mapred-site.xml

Yarn for resource management

Version 2: JobTracker
split : resource 
management and job 
scheduling/monitoring 

conf/yarn-site.xml
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Hadoop 1.2.1 Usage Examples
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Apache Hadoop Architecture Elements

NameNode (and Secondary NameNode)
 ‘Service’ that has all information about the HDFS file system (‘data nodes’)

JobTracker (point of failure  no secondary instance!)
 ‘Service’ that ‘farms out’ map-reduce tasks to specific nodes in the cluster

TaskTracker (close to DataNodes, offering ‘job slots’ to submit to)
 Entity in a node in the cluster that ‘accepts/performs map-reduce tasks’ 

compute nodes with data storage

Standard
Apache Hadoop Deployment
(Data nodes & TaskTrackers)

NameNode

JobTracker

Secondary
NameNode

 DataNode
 Part of the HDFS filesystem
 Responds to requests from 

the NameNode for 
‘filesystem operations’
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Reliability & Fault-Tolerance in Map-Reduce (1) 

1. Users use the client application to submit jobs to the JobTracker 
2. A JobTracker interacts with the NameNode to get data location
3. The JobTracker locates TaskTracker nodes with available slots 

at or near the data (‘data locality principle’)
4. The JobTracker submits the work to the chosen TaskTracker nodes 

compute nodes with data storage

Standard
Apache Hadoop Deployment
(Data nodes & TaskTrackers)

NameNode

JobTracker

Secondary
NameNode

1

23

TaskTracker
4

Map-Reduce Jobs

‘Big Data’ required for job
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Reliability & Fault-Tolerance in Map-Reduce (2) 

5. The TaskTracker nodes are monitored (ensure ‘reliability’) 
 ‘Fault tolerance’: If they do not submit heartbeat signals often enough, 

they are deemed to have failed & the work is given to different TaskTracker 

6. The TaskTracker notifies the JobTracker when a task fails
 The JobTracker decides next action: it may resubmit the job elsewhere or it 

may mark that specific record as something to avoid
 The Jobtracker may may even ‘blacklist the TaskTracker as unreliable’ 

compute nodes with data storage

Standard
Apache Hadoop Deployment
(Data nodes & TaskTrackers)

NameNode

JobTracker

Secondary
NameNode

5

6

TaskTracker

7. When the work is completed, the 
JobTracker updates its status

8. Client applications can poll the 
JobTracker for information TaskTracker

6

7

8

40 / 81



Introduction to Big Data in HPC, Hadoop and HDFS

Cluster Setups with Hadoop-On-Demand (HOD)

 Hadoop On Demand (HOD) is a specific Hadoop distribution for provisioning virtual Hadoop 
cluster deployments over a large physical cluster that is managed by a scheduler (i.e. Torque).

When to use?
 A given physical cluster exists with nodes managed by scheduling system

‘Semi-Automatic Deployment’ approach
 HOD provisions and maintains Hadoop Map-Reduce and HDFS instances 

through interaction with several HOD components on given physical nodes

Performs cluster node allocation 
 Starts Hadoop Map/Reduce and HDFS daemons on allocated nodes 
 Makes it easy for administrators to quickly setup and use Hadoop 

Includes automatic configurations
 Generates configuration files for the Hadoop daemons and client
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Submit nodes
 Users use the HOD client on these nodes to 

allocate ‘cluster nodes’ and use the 
Hadoop client to submit Map-Reduce jobs 

Compute nodes
 The resource manager runs HOD components on these nodes to provision the 

Hadoop daemons that enable Map-Reduce jobs

HOD Deployment on Different Cluster Node Types

submit node
compute nodes

allocated compute nodes

Specific node

Resource Manager

hod client

hadoop client

hod 
components

 The usage of HOD is optimized for
users that do not want to know the 
low-level technical details

1

2
3

4

5
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HOD Detailed Architecture Elements

Basic System Architecture of HOD includes:
 A Resource Manager & Scheduling system (i.e. Torque)
 Hadoop Map/Reduce and HDFS daemons need to run
 Various HOD components (HOD RingMaster, HOD Rings)

HOD RingMaster
 Starts as a process of the compute nodes (mother superior, in Torque)
 Uses a resource manager interface (pbsdsh, in Torque) 
 Runs the HodRing as distributed tasks on the allocated compute nodes

HOD Rings
 Communicate with the HOD RingMaster to get Hadoop commands 

(e.g. new map-reduce jobs) and run them accordingly
 Once the Hadoop commands are started they register with the RingMaster, 

giving information about the daemons of the HOD Rings

Torque

Map-Reduce Jobs

hod ringmaster

hodring

43 / 81

 Since map-reduce version 2 HOD is deprected and YARN is the scheduler to be used instead



Introduction to Big Data in HPC, Hadoop and HDFS

Hadoop Adoptions – In Industry

[19] IBM System @ Smart Data Innovation Lab

[1]

[2]

[2]
[2]

class
label

[2]

[2]
[2][1]

Closed Source Algorithms 
in Business Solutions
(e.g. also IBM SPSS)

Classification

 Uptake of Hadoop in many different 
business environments, SMEs, etc.
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Map-Reduce Deployment Models 

 Map-Reduce deployments are particularly well suited for cloud computing deployments 
 Deployments need still some useful map-reduce codes (cf. to MPI/OpenMP w/o their codes)

On-premise
full custom

Map-Reduce
Appliance

Map-Reduce
Hosting

Map-Reduce
As-A-Service

Bare-metal CloudsVirtualized
[23] Inspired by a study on Hadoop by Accenture

High Trust? Low Trust?Data Privacy 

ICELAND?EUROPE?

Options to move ‘data to strong computing power‘ ...

… or move ‘compute tasks close to data‘
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Data Analytics in the view of Open Data Science

Experience in investigation of available parallel data mining algorithms

implementations rare and/or not stable

Parallelization of Algorithm Extension A‘  A‘‘

Algorithm Extension A‘ Implementation

Algorithm A Implementation

implementations available
Classification++

Regression++Clustering++
closed/old source, also after 

asking paper authors

MLlib

 Stable open source algorithms are still rather rare (Map-reduce, MPI/OpenMP, and GPGPUs)
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Data Analytics with SVM – Algorithm Availability

Tool Platform Approach Parallel Support Vector 
Machine

Apache Mahout Java; Apache Hadoop 1.0 
(map-reduce); HTC

No strategy for implementation 
(Website), serial SVM in code

Apache Spark/MLlib Apache Spark; HTC Only linear SVM; no multi-class 
implementation

Twister/ParallelSVM Java; Apache Hadoop 1.0 
(map-reduce); Twister 
(iterations), HTC

Much dependencies on other 
software: Hadoop, Messaging, 
etc. Version 0.9 development

Scikit-Learn Python; HPC/HTC Multi-class Implementations of
SVM, but not fully parallelized

piSVM C code; Message Passing 
Interface (MPI); HPC

Simple multi-class parallel
SVM implementation outdated 
(~2011)

GPU accelerated LIBSVM CUDA language Multi-class parallel SVM, 
relatively hard to program, no 
std. (CUDA)

pSVM C code; Message Passing 
Interface (MPI); HPC

Unstable beta, SVM 
implementation outdated 
(~2011)
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Lessons Learned – Hadoop & Map-Reduce

Be careful of investing time & efforts
 Frameworks keep significantly fast changing, no peer-reviews as in HPC

(e.g. Hadoop 1.0  Hadoop 2.0, new move of community to Spark)
 Map-reduce basically standard, but not as stable as established MPI or OpenMP
 Hadoop 2.0 improvements with YARN to work in ‘HPC scheduling environments‘
 Consider and observe developments around Apache Spark

Solutions on-top-of Hadoop keep changing
 Many different frameworks are available on top of Hadoop 
 Often business-driven developments (e.g. to be used in recommender systems)
 Data Analytics with Mahout have only a limited number of algorithms

(E.g. Decision trees, collaborative filtering, no SVMs, no artifical neural networks)
 Data Analytics with Twister works, but limited algorithms

(E.g. SVM v.0.9 works, but old development/research version, unmaintained)
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Part Two – Questions 
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Part Two – Outline 

Part One ‘Big Data‘ Challenges & HPC Tools
 Understanding ‘Big Data‘ in Science & Engineering
 Statistical Data Mining and Learning from ‘Big Data‘
 OpenMP/MPI Tool Example for Clustering ‘Big Data‘
 MPI Tool Example for Classification of ‘Big Data‘

coffee break

Part Two ‘Big Data‘ & Distributed Computing Tools
 Exploring Parallel & Distributed Computing Approaches
 Examples of Map-Reduce & ‘Big Data‘ Processing with Hadoop
 Tools for handling ‘Big Data‘ storage & replication methods
 Technologies for Large-scale distributed ‘Big Data‘ Management
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Distributed File Systems vs. Parallel File Systems

Distributed File Systems
 Clients, servers, and storage devices are geographically dispersed 

among machines of a distributed system (often appear as ‘single system’)
 Manage access to files from multiple processes
 But generally treat ‘concurrent access’ as an unusual event
 E.g. Hadoop Distributed File System (HDFS) implementation

Parallel File Systems 
 Deal with many problematic questions arising during ‘parallel programming’
 E.g. How can hundreds or thousands of processes access the same file 

concurrently and efficiently?
 E.g. How should file pointers work?
 E.g. Can the UNIX sequential consistency semantics be preserved?
 E.g. How should file blocks be cached and buffered?
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Hadoop Distributed File System (HDFS)

A ‘specialized filesystem’ designed for reliability and scalability
 Designed to run on ‘comodity hardware’
 Many similarities with existing ‘distributed file systems’
 Takes advantage of ‘file and data replication concept’

Differences to traditional distributed file systems are significant
 Designed to be ‘highly fault-tolerant’ improves dependability!
 Enables use with applications that have ‘extremely large data sets’

Provides ‘high throughput access’ to application data 
 HDFS relaxes a few POSIX requirements 
 Enables ‘streaming access’ to file system data

Origin
 HDFS was originally built as infrastructure for 

the ‘Apache Nutch web search engine project’

[9] The Hadoop Distributed File System
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HDFS Key Feature: File Replication Concept

Ideal: Replicas reside on ‘failure-independent machines’
 Availability of one replica should not depend on availability of others
 Requires ability to place replica on particular machine
 ‘Failure-independent machines’ hard to find, but in ‘system design’ easier

Replication should be hidden from users
 But replicas must be distinguishable at lower level
 Different DataNode’s are not visible to end-users

Replication control at higher level
 Degree of replication must be adjustable 

(e.g. Hadoop configuration files)

 File replication is a useful redundancy for improving availability and performance

Modified from [10] Virtual Workshop
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HDFS Master/NameNode

The master/name node is replicated
 A directory for the file system as a whole knows where to find the copies
 All participants using the DFS know where the directory copies are

Modified from [10] Virtual Workshop

 The Master/Name node keeps metadata (e.g. node knows about the blocks of files)

E.g. horizontal
partitioning
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HDFS File Operations

Different optimized operations on different ‘nodes’
NameNode 
 Determines the mapping of ‘pure data blocks’ to DataNodes (metadata)
 Executes file system namespace operations 
 E.g. opening, closing, and renaming files and directories

DataNode
 Serving ‘read and write 

requests’ from HDFS
filesystem clients
 Performs block creation, 

deletion, and replication 
(upon instruction from 
the NameNode)

[10] Virtual Workshop
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HDFS File/Block(s) Distribution Example

[9] The Hadoop Distributed File System
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Working with HDFS

HDFS can be deployed in conjunction with another filesystem
 But HDFS files are not directly accessible via the ‘normal file system’

‘Normal User’ Commands
 Create a directory named /foodir

e.g. bin/hadoop dfs -mkdir /foodir
 View the contents of a file named /foodir/myfile.txt

e.g. bin/hadoop dfs –cat /foodir/myfile.txt

Administrator Commands
 Generate a list of DataNodes

e.g. bin/hadoop dfsadmin -report
 Decommission DataNode datanodename (e.g. maintenance/check reasons)

e.g. bin/hadoop dfsadmin –decommission datanodename

[9] The Hadoop Distributed File System
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HDFS Selected Administration & Configuration (1)

Release Download
 Well maintained, often new versions
 Add/remove nodes dynamically
 Namenode

 Check Webpage
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HDFS Selected Administration & Configuration (2)

conf/core-site.xml

conf/hdfs-site.xml
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HDFS Usage Examples
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HDFS & Hadoop Map-Reduce Ecosystem

Modified from 
[26] Map-Reduce  Machine Learning & Data Mining

 SQL Scripts

 Metadata Management

 Parallel Task Execution

 Efficient & reliable data storage

 Relational
Data

 NoSQL
Database

 Administration & deployment experience – hard to get versions in sync and maintain updates
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Lessons Learned – HDFS

Be careful of investing time & efforts
 Frameworks keep significantly fast changing, no peer-reviews as in HPC

(e.g. HDFS is part of the changing Hadoop series)
 Large-scale deployments of HDFS rather in business than in scientific production

(e.g. 2-3 times replication of scientific data on active disks usually not affordable)
 Consider and observe developments around Apache Spark

Comparisons with HPC Centers & usual parallel filesystems
 Deployments together with parallel filesystems are not straightforward

(e.g. IBM works still on Watson and GPFS integration for its Hadoop stacks)
 HPC centers with parallel filesystems often have large backend storage too

(e.g. single site vs. map-reduce HDFS idea of different sites)
 Parallel I/O and high-level libraries like HDF5 or pNetCDF are very scalable

(e.g. tool support and integration straightforward, de-facto-standards, etc.)
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Part Two – Questions 
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Part Two – Outline 

Part One ‘Big Data‘ Challenges & HPC Tools
 Understanding ‘Big Data‘ in Science & Engineering
 Statistical Data Mining and Learning from ‘Big Data‘
 OpenMP/MPI Tool Example for Clustering ‘Big Data‘
 MPI Tool Example for Classification of ‘Big Data‘

coffee break

Part Two ‘Big Data‘ & Distributed Computing Tools
 Exploring Parallel & Distributed Computing Approaches
 Examples of Map-Reduce & ‘Big Data‘ Processing with Hadoop
 Tools for handling ‘Big Data‘ storage & replication methods
 Technologies for Large-scale distributed ‘Big Data‘ Management
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Emerging Spark Platform

Selected Facts
 Machine learning library 

(in development, v.0.9)
 Offers flexible execution platform 

that can take advantage of Apache Hadoop 
using map&reduce 

 Apache Spark offers scalable machine 
learning and data mining algorithms

 Supports Scala, Java and Python and 
runs in parallel using map-reduce

[20] Apache Spark Webpage

 Basic statistics 
for summary statistics

 Classification and regression
with linear models with 
Support Vector Machines, 
logistic regression, linear 
regresssion

 Classification with decision 
trees and naive Bayes

 Collaborative filtering using
alternating least squares

 Clustering using K-Means
 Dimensionality reduction

with Principle Component 
Analysis (PCA) and Singular 
Value Decomposition (SVD)

MLlib
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Tools for Large-scale Distributed Data Management

[25] M. Riedel & P. Wittenburg et al.
 Useful tools for data-driven scientists & HPC users
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Need for Sharing & Reproducability in HPC – Example 

Professor

PhD Student

research & PhD
thesis activities &
papers, and….

Bachelor thesis
Student

another
collaborator

Student Classes

bachelor
thesis activities,
e.g. improving
code (same data)

Teach class with good
AND bad examples!

 Sharing different 
datasets is key

 One tend to loose
the overview
of which data
is stored on 
which platform

 How do we gain
trust to delete
data when 
duplicates on
different systems
exist
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Concete Datasets
(& source/sensor)

(parallel) 
Algorithms & 
Methods

Technologies & 
Ressources

Smart Data Analytics Process

„Reference Data Analytics“
for reusability & learning

Report
for joint
Usage

Openly
Shared

Datasets

Running
Analytics

Code

Scientific
Data

Applications

Manual 
Feature ReductionTraditional

Data Analysis
time to solution

Big Data
Analytics

Combine
both:

Smart Data
AnalyticsManual 

Feature Extraction

Simple Data 
Preprocessing

Manual
Feature Selection

‘Automated Parallel‘ 
Data Analytics

Data Analysis

Data 
Postprocessing

CRISP-DM report[24] C. Shearer, CRISP-DM model,
Journal Data Warehousing, 5:13

choose choose choose
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 Having this tool available on the Web helps tremendously to 
save time for no research tasks

 Using the tool enables to focus better on the research tasks

Reproducability Example in Data-driven Science (1)
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 Sharing pre-
processed
data

 LibSVM format
 Training and 

Testing Datasets
 Different setups

for analysis
(SDAP on All or
SDAP on 
Panchromatic)

Reproducability Example in Data-driven Science (2)
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Simple download from http using the wget command

 Simple
Download
from http
using wget

 Well defined
directory 
structures

…other
open

B2SHARE
datasets

…before adopting
B2SHARE regularly

Reproducability Example in Data-driven Science (3)
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Reproducability Example in Data-driven Science (4)

Make a short note in your directory linking back to B2SHARE

 Enables the trust to delete data if necessary (working against big data)
 Link back to B2SHARE for quick checks and file that links back fosters trust
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Reproducability Example in Data-driven Science (5)

… different versions of a 
parallel neural network code

(another classification
technique)

… different versions of a
parallel 

support vector machine 
code

 True reproducability needs: (1) datasets; 
(2) technique parameters (here for SVM); 
and (3) correct versions of algorithm code

… a bachelor project
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Distributed Large-scale Data Management & Execution

[21] UNICORE.eu
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In-Situ Analytics for HPC & Exascale

Exascale computer with access to exascale storage/archives 

In-situ correlations
& data reduction

analytics part visualization part

computational simulation part

In-situ statistical 
data mining

e.g. map-reduce jobs, R-MPI

key-value pair DB

e.g. clustering, classification

distributed archive
in-memory

visual
analytics

scientific
visualization &
‘beyond steering’exascale application

interactive

Scalable I/O

correlations

[21] Inspired by ASCAC DOE report 
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