001     187269
005     20240610121123.0
024 7 _ |2 doi
|a 10.1088/0268-1242/30/3/035002
024 7 _ |2 Handle
|a 2128/8304
024 7 _ |2 WOS
|a WOS:000350631400003
037 _ _ |a FZJ-2015-00942
041 _ _ |a English
082 _ _ |a 530
100 1 _ |0 P:(DE-HGF)0
|a Meingast, Arno
|b 0
|e Corresponding Author
245 _ _ |a Analytical electron microscopy study on gallium nitride systems doped with manganese and iron
260 _ _ |a Bristol
|b IOP Publ.
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1422358070_24682
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a Modulated structures of gallium nitride (GaN) doped with transition metal ions (here Fe, Mn) are investigated by analytical (scanning) transmission electron microscopy to gain insight into the structural arrangement and chemical composition of the material, known to be critically correlated to the magnetic response and hence the functionality of these technologically relevant systems. Three classes of samples are considered: (i) homogeneous (dilute) (Ga, Mn)N; (ii) δ-Mn-doped (Ga, δ-Mn)N and phase separated (Ga, Fe)N, containing Fe-rich nanocrystals. The combination of various microscopic techniques employed, allows for a quantitative determination of the distribution of the magnetic ions in the samples, providing essential information on the structural and chemical asset of these systems.
536 _ _ |0 G:(DE-HGF)POF3-143
|a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|c POF3-143
|f POF III
|x 0
700 1 _ |0 P:(DE-HGF)0
|a Navarro Quezada, Andrea
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Devillers, Thibout
|b 2
700 1 _ |0 P:(DE-Juel1)144926
|a Kovacs, Andras
|b 3
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Albu, Mihela
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Fladischer, Stefanie
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Bonanni, Alberta
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Kothleitner, Gerald
|b 7
773 _ _ |0 PERI:(DE-600)1361285-2
|a 10.1088/0268-1242/30/3/035002
|n 3
|p 035002
|t Semiconductor science and technology
|v 30
|x 0268-1242
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/187269/files/FZJ-2015-00942.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:187269
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144926
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
913 0 _ |0 G:(DE-HGF)POF2-42G41
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l Grundlagen für zukünftige Informationstechnologien
|v Peter Grünberg-Centre (PG-C)
|x 0
913 1 _ |0 G:(DE-HGF)POF3-143
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
|a Creative Commons Attribution CC BY 3.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21