000187285 001__ 187285
000187285 005__ 20240712100848.0
000187285 0247_ $$2doi$$a10.5194/acp-15-927-2015
000187285 0247_ $$2ISSN$$a1680-7316
000187285 0247_ $$2ISSN$$a1680-7324
000187285 0247_ $$2Handle$$a2128/8314
000187285 0247_ $$2WOS$$aWOS:000351170000013
000187285 037__ $$aFZJ-2015-00958
000187285 082__ $$a550
000187285 1001_ $$0P:(DE-Juel1)129154$$aSpang, R.$$b0$$eCorresponding Author$$ufzj
000187285 245__ $$aSatellite observations of cirrus clouds in the Northern Hemisphere lowermost stratosphere
000187285 260__ $$aKatlenburg-Lindau$$bEGU$$c2015
000187285 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1422430426_8064
000187285 3367_ $$2DataCite$$aOutput Types/Journal article
000187285 3367_ $$00$$2EndNote$$aJournal Article
000187285 3367_ $$2BibTeX$$aARTICLE
000187285 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000187285 3367_ $$2DRIVER$$aarticle
000187285 520__ $$aHere we present observations of the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) of cirrus cloud and water vapour in August 1997 in the upper troposphere and lower stratosphere (UTLS). The observations indicate a considerable flux of moisture from the upper tropical troposphere into the extratropical lowermost stratosphere (LMS), resulting in the occurrence of high-altitude optically thin cirrus clouds in the LMS.The locations of the LMS cloud events observed by CRISTA are consistent with the tropopause height determined from coinciding radiosonde data. For a hemispheric analysis in tropopause relative coordinates an improved tropopause determination has been applied to the European Centre for Medium-Range Weather Forecasts (ECMWF) temperature profiles. We found that a significant fraction of the cloud occurrences in the tropopause region are located in the LMS, even if a conservative overestimate of the cloud top height (CTH) determination by CRISTA of 500 m is assumed. The results show rather high occurrence frequencies (~ 5%) up to high northern latitudes (70° N) and altitudes well above the tropopause (> 500 m at ~350 K and above) in large areas at mid- and high latitudes.Comparisons with model runs of the Chemical Lagrangian Model of the Stratosphere (CLaMS) over the CRISTA period show a reasonable consistency in the retrieved cloud pattern. For this purpose a limb ray tracing approach was applied through the 3-D model fields to obtain integrated measurement information through the atmosphere along the limb path of the instrument. The simplified cirrus scheme implemented in CLaMS seems to cause a systematic underestimation in the CTH occurrence frequencies in the LMS with respect to the observations. The observations together with the model results demonstrate the importance of isentropic, quasi-horizontal transport of water vapour from the subtropics and the potential for the occurrence of cirrus clouds in the lowermost stratosphere and tropopause region.
000187285 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000187285 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000187285 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000187285 7001_ $$0P:(DE-Juel1)129123$$aGünther, G.$$b1$$ufzj
000187285 7001_ $$0P:(DE-Juel1)129145$$aRiese, M.$$b2$$ufzj
000187285 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, L.$$b3$$ufzj
000187285 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b4$$ufzj
000187285 7001_ $$0P:(DE-Juel1)129121$$aGriessbach, S.$$b5$$ufzj
000187285 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-15-927-2015$$gVol. 15, no. 2, p. 927 - 950$$n2$$p927 - 950$$tAtmospheric chemistry and physics$$v15$$x1680-7324$$y2015
000187285 8564_ $$uhttps://juser.fz-juelich.de/record/187285/files/FZJ-2015-00958.pdf$$yOpenAccess
000187285 8564_ $$uhttps://juser.fz-juelich.de/record/187285/files/FZJ-2015-00958.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000187285 8564_ $$uhttps://juser.fz-juelich.de/record/187285/files/FZJ-2015-00958.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000187285 8564_ $$uhttps://juser.fz-juelich.de/record/187285/files/FZJ-2015-00958.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000187285 909CO $$ooai:juser.fz-juelich.de:187285$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000187285 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000187285 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000187285 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000187285 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000187285 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000187285 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000187285 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000187285 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000187285 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000187285 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000187285 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000187285 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000187285 9141_ $$y2015
000187285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129154$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000187285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129123$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000187285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000187285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000187285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000187285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129121$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000187285 9130_ $$0G:(DE-HGF)POF2-234$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and Dynamics of the Upper Troposphere and Stratosphere$$x0
000187285 9130_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000187285 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000187285 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000187285 920__ $$lyes
000187285 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000187285 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000187285 9801_ $$aFullTexts
000187285 980__ $$ajournal
000187285 980__ $$aVDB
000187285 980__ $$aUNRESTRICTED
000187285 980__ $$aFullTexts
000187285 980__ $$aI:(DE-Juel1)IEK-7-20101013
000187285 980__ $$aI:(DE-Juel1)JSC-20090406
000187285 981__ $$aI:(DE-Juel1)ICE-4-20101013
000187285 981__ $$aI:(DE-Juel1)JSC-20090406