000187298 001__ 187298
000187298 005__ 20210129215004.0
000187298 0247_ $$2doi$$a10.1016/j.snb.2014.02.103
000187298 0247_ $$2ISSN$$a0925-4005
000187298 0247_ $$2ISSN$$a1873-3077
000187298 0247_ $$2WOS$$aWOS:000335580100016
000187298 037__ $$aFZJ-2015-00970
000187298 082__ $$a530
000187298 1001_ $$0P:(DE-HGF)0$$aHuck, C.$$b0
000187298 245__ $$aCapacitively coupled electrolyte-conductivity sensor based on high-k material of barium strontium titanate
000187298 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2014
000187298 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1423059526_20929
000187298 3367_ $$2DataCite$$aOutput Types/Journal article
000187298 3367_ $$00$$2EndNote$$aJournal Article
000187298 3367_ $$2BibTeX$$aARTICLE
000187298 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000187298 3367_ $$2DRIVER$$aarticle
000187298 520__ $$aA miniaturized capacitively coupled contactless conductivity detection (C4D) sensor based on high-k perovskite oxide of barium strontium titanate (BST) has been implemented for the first time. The BST films (∼120 nm thick) of Ba0.25Sr0.75TiO3 composition were prepared on a p-Si-SiO2-Pt structure by pulsed laser deposition technique using BST targets fabricated by the self-propagating high-temperature synthesis method. The Pt electrodes were buried into the SiO2 layer to obtain a planar structure. For comparison, contact-mode electrolyte-conductivity (EC) sensors without the protective BST layer were also fabricated. To study the influence of the protective BST layer, both sensors were characterized in electrolyte solutions with various conductivities using two- and four-electrode operation modes. The impedance spectra were recorded in a frequency range from 1 Hz to 1 MHz. An equivalent circuit of the C4D sensor is discussed as well.Both, the EC and C4D sensor, demonstrate nearly identical sensor characteristics. The obtained results clearly show the benefits of the use of the BST-based C4D sensor in a four-electrode configuration for contactless conductivity measurements. A linear dependence between the measured conductance and the electrolyte conductivity is obtained in a wide range of electrolyte conductivity from 0.3 mS/cm to 50 mS/cm. Moreover, typical problems associated with contact-mode EC detection such as the effect of possible redox processes, contamination and fouling of electrodes during continuous measurements can be minimized, thus, enhancing the life-time of conductivity sensors considerably.
000187298 536__ $$0G:(DE-HGF)POF2-423$$a423 - Sensorics and bioinspired systems (POF2-423)$$cPOF2-423$$fPOF II$$x0
000187298 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000187298 7001_ $$0P:(DE-Juel1)128717$$aPoghossian, Arshak$$b1$$eCorresponding Author$$ufzj
000187298 7001_ $$0P:(DE-HGF)0$$aBäcker, M.$$b2
000187298 7001_ $$0P:(DE-Juel1)162383$$aChaudhuri, S.$$b3
000187298 7001_ $$0P:(DE-Juel1)128648$$aZander, W.$$b4
000187298 7001_ $$0P:(DE-Juel1)128631$$aSchubert, J.$$b5
000187298 7001_ $$0P:(DE-HGF)0$$aBegoyan, V. K.$$b6
000187298 7001_ $$0P:(DE-HGF)0$$aBuniatyan, V. V.$$b7
000187298 7001_ $$0P:(DE-HGF)0$$aWagner, P.$$b8
000187298 7001_ $$0P:(DE-Juel1)128727$$aSchöning, M. J.$$b9
000187298 773__ $$0PERI:(DE-600)1500731-5$$a10.1016/j.snb.2014.02.103$$gVol. 198, p. 102 - 109$$p102 - 109$$tSensors and actuators <Lausanne> / B$$v198$$x0925-4005$$y2014
000187298 8564_ $$uhttps://juser.fz-juelich.de/record/187298/files/FZJ-2015-00970.pdf$$yRestricted
000187298 909CO $$ooai:juser.fz-juelich.de:187298$$pVDB
000187298 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000187298 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000187298 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000187298 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000187298 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000187298 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000187298 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000187298 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000187298 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000187298 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000187298 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000187298 9141_ $$y2014
000187298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128717$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000187298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162383$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000187298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128648$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000187298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000187298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128727$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000187298 9132_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000187298 9131_ $$0G:(DE-HGF)POF2-423$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSensorics and bioinspired systems$$x0
000187298 920__ $$lyes
000187298 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x0
000187298 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000187298 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x2
000187298 980__ $$ajournal
000187298 980__ $$aVDB
000187298 980__ $$aI:(DE-Juel1)PGI-8-20110106
000187298 980__ $$aI:(DE-82)080009_20140620
000187298 980__ $$aI:(DE-Juel1)PGI-9-20110106
000187298 980__ $$aUNRESTRICTED
000187298 981__ $$aI:(DE-Juel1)PGI-9-20110106