001     187298
005     20210129215004.0
024 7 _ |2 doi
|a 10.1016/j.snb.2014.02.103
024 7 _ |2 ISSN
|a 0925-4005
024 7 _ |2 ISSN
|a 1873-3077
024 7 _ |2 WOS
|a WOS:000335580100016
037 _ _ |a FZJ-2015-00970
082 _ _ |a 530
100 1 _ |0 P:(DE-HGF)0
|a Huck, C.
|b 0
245 _ _ |a Capacitively coupled electrolyte-conductivity sensor based on high-k material of barium strontium titanate
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2014
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1423059526_20929
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a A miniaturized capacitively coupled contactless conductivity detection (C4D) sensor based on high-k perovskite oxide of barium strontium titanate (BST) has been implemented for the first time. The BST films (∼120 nm thick) of Ba0.25Sr0.75TiO3 composition were prepared on a p-Si-SiO2-Pt structure by pulsed laser deposition technique using BST targets fabricated by the self-propagating high-temperature synthesis method. The Pt electrodes were buried into the SiO2 layer to obtain a planar structure. For comparison, contact-mode electrolyte-conductivity (EC) sensors without the protective BST layer were also fabricated. To study the influence of the protective BST layer, both sensors were characterized in electrolyte solutions with various conductivities using two- and four-electrode operation modes. The impedance spectra were recorded in a frequency range from 1 Hz to 1 MHz. An equivalent circuit of the C4D sensor is discussed as well.Both, the EC and C4D sensor, demonstrate nearly identical sensor characteristics. The obtained results clearly show the benefits of the use of the BST-based C4D sensor in a four-electrode configuration for contactless conductivity measurements. A linear dependence between the measured conductance and the electrolyte conductivity is obtained in a wide range of electrolyte conductivity from 0.3 mS/cm to 50 mS/cm. Moreover, typical problems associated with contact-mode EC detection such as the effect of possible redox processes, contamination and fouling of electrodes during continuous measurements can be minimized, thus, enhancing the life-time of conductivity sensors considerably.
536 _ _ |0 G:(DE-HGF)POF2-423
|a 423 - Sensorics and bioinspired systems (POF2-423)
|c POF2-423
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)128717
|a Poghossian, Arshak
|b 1
|e Corresponding Author
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Bäcker, M.
|b 2
700 1 _ |0 P:(DE-Juel1)162383
|a Chaudhuri, S.
|b 3
700 1 _ |0 P:(DE-Juel1)128648
|a Zander, W.
|b 4
700 1 _ |0 P:(DE-Juel1)128631
|a Schubert, J.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Begoyan, V. K.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Buniatyan, V. V.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Wagner, P.
|b 8
700 1 _ |0 P:(DE-Juel1)128727
|a Schöning, M. J.
|b 9
773 _ _ |0 PERI:(DE-600)1500731-5
|a 10.1016/j.snb.2014.02.103
|g Vol. 198, p. 102 - 109
|p 102 - 109
|t Sensors and actuators / B
|v 198
|x 0925-4005
|y 2014
856 4 _ |u https://juser.fz-juelich.de/record/187298/files/FZJ-2015-00970.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:187298
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128717
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)162383
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128648
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128631
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128727
|a Forschungszentrum Jülich GmbH
|b 9
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-523
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Configuration-Based Phenomena
|x 0
913 1 _ |0 G:(DE-HGF)POF2-423
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|v Sensorics and bioinspired systems
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-8-20110106
|k PGI-8
|l Bioelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-8-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-9-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21