000187309 001__ 187309
000187309 005__ 20210129215006.0
000187309 0247_ $$2doi$$a10.1016/j.neuroimage.2015.01.034
000187309 0247_ $$2ISSN$$a1053-8119
000187309 0247_ $$2ISSN$$a1095-9572
000187309 0247_ $$2WOS$$aWOS:000349971600027
000187309 0247_ $$2altmetric$$aaltmetric:3084681
000187309 0247_ $$2pmid$$apmid:25613438
000187309 037__ $$aFZJ-2015-00980
000187309 082__ $$a610
000187309 1001_ $$0P:(DE-Juel1)165759$$aPool, Eva-Maria$$b0
000187309 245__ $$aFunctional resting-state connectivity of the human motor network: Differences between right- and left-handers
000187309 260__ $$aOrlando, Fla.$$bAcademic Press$$c2015
000187309 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1422870082_13707
000187309 3367_ $$2DataCite$$aOutput Types/Journal article
000187309 3367_ $$00$$2EndNote$$aJournal Article
000187309 3367_ $$2BibTeX$$aARTICLE
000187309 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000187309 3367_ $$2DRIVER$$aarticle
000187309 520__ $$aHandedness is associated with differences in activation levels in various motor tasks performed with the dominant or non-dominant hand. Here we tested whether handedness is reflected in the functional architecture of the motor system even in the absence of an overt motor task. Using resting-state functional magnetic resonance imaging we investigated 18 right- and 18 left-handers. Whole-brain functional connectivity maps of the primary motor cortex (M1), supplementary motor area (SMA), dorsolateral premotor cortex (PMd), pre-SMA, inferior frontal junction and motor putamen were compared between right- and left-handers. We further used a multivariate linear support vector machine (SVM) classifier to reveal the specificity of brain regions for classifying handedness based on individual resting-state maps. Using left M1 as seed region, functional connectivity analysis revealed stronger interhemispheric functional connectivity between left M1 and right PMd in right-handers as compared to left-handers. This connectivity cluster contributed to the individual classification of right- and left-handers with 86.2% accuracy. Consistently, also seeding from right PMd yielded a similar handedness-dependent effect in left M1, albeit with lower classification accuracy (78.1%). Control analyses of the other resting-state networks including the speech and the visual network revealed no significant differences in functional connectivity related to handedness. In conclusion, our data revealed an intrinsically higher functional connectivity in right-handers. These results may help to explain that hand preference is more lateralized in right-handers than in left-handers. Furthermore, enhanced functional connectivity between left M1 and right PMd may serve as an individual marker of handedness.
000187309 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000187309 536__ $$0G:(EU-Grant)604102$$aHBP - The Human Brain Project (604102)$$c604102$$fFP7-ICT-2013-FET-F$$x1
000187309 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000187309 7001_ $$0P:(DE-HGF)0$$aRehme, Anne K.$$b1
000187309 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b2
000187309 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b3
000187309 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b4$$eCorresponding Author
000187309 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2015.01.034$$gp. S105381191500049X$$p298–306$$tNeuroImage$$v109$$x1053-8119$$y2015
000187309 8564_ $$uhttps://juser.fz-juelich.de/record/187309/files/FZJ-2015-00980.pdf$$yRestricted
000187309 909CO $$ooai:juser.fz-juelich.de:187309$$pec_fundedresources$$pVDB$$popenaire
000187309 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000187309 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000187309 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000187309 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000187309 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000187309 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000187309 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000187309 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000187309 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000187309 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000187309 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000187309 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000187309 9141_ $$y2015
000187309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165759$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000187309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000187309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000187309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161406$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000187309 9130_ $$0G:(DE-HGF)POF2-333$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vPathophysiological Mechanisms of Neurological and Psychiatric Diseases$$x0
000187309 9130_ $$0G:(DE-HGF)POF2-89571$$1G:(DE-HGF)POF2-89570$$2G:(DE-HGF)POF3-890$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x1
000187309 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000187309 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000187309 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x1
000187309 980__ $$ajournal
000187309 980__ $$aVDB
000187309 980__ $$aI:(DE-Juel1)INM-1-20090406
000187309 980__ $$aI:(DE-Juel1)INM-3-20090406
000187309 980__ $$aUNRESTRICTED
000187309 981__ $$aI:(DE-Juel1)INM-3-20090406