000187363 001__ 187363 000187363 005__ 20230711154056.0 000187363 0247_ $$2Handle$$a2128/8322 000187363 037__ $$aFZJ-2015-01034 000187363 041__ $$aEnglish 000187363 1001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b0$$eCorresponding Author$$ufzj 000187363 1112_ $$aBig Data and Extreme Scale Computing 2015$$cBarcelona$$d2015-01-28 - 2015-01-30$$gBDEC 2015$$wSpain 000187363 245__ $$aEuropean Data Infrastructure - EUDAT: Data Services & Tools 000187363 260__ $$c2015 000187363 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1422512889_8066$$xInvited 000187363 3367_ $$033$$2EndNote$$aConference Paper 000187363 3367_ $$2DataCite$$aOther 000187363 3367_ $$2ORCID$$aLECTURE_SPEECH 000187363 3367_ $$2DRIVER$$aconferenceObject 000187363 3367_ $$2BibTeX$$aINPROCEEDINGS 000187363 520__ $$aWith ever increasing scales towards extreme-scales in high performance computing large quantities of data are continuing to grow leading to a wide variety of challenges for computational sciences. Solutions are discussed in the talk of using analytics and visualizations in parallel - in-situ - to the extreme-scale simulation run in order to reduce, validate, or to even only understand the complex scientific datasets generated. Exchanging and sharing those data, replicating and archiving for later re-use, or permanently linking the data within publications are just a few challending areas for which the European Data Infrastructure EUDAT offers selected tools. The talk motivates this problem space towards extreme scales and outlines a potential set of tools and methods. one of the feasible sustainable approaches is known as a collaborative data infrastructure that encourages trust in users and, among other benefits, enables the removal of duplicate datasets. 000187363 536__ $$0G:(DE-HGF)POF3-512$$a512 - Data-Intensive Science and Federated Computing (POF3-512)$$cPOF3-512$$fPOF III$$x0 000187363 536__ $$0G:(EU-Grant)283304$$aEUDAT - EUropean DATa (283304)$$c283304$$fFP7-INFRASTRUCTURES-2011-2$$x1 000187363 773__ $$y2015 000187363 8564_ $$uhttp://morrisriedel.de/sites/default/files/share/2015-01-28-EUDAT-Riedel-Small-v1.pdf 000187363 8564_ $$uhttps://juser.fz-juelich.de/record/187363/files/FZJ-2015-01034.pdf$$yOpenAccess 000187363 8564_ $$uhttps://juser.fz-juelich.de/record/187363/files/FZJ-2015-01034.jpg?subformat=icon-144$$xicon-144$$yOpenAccess 000187363 8564_ $$uhttps://juser.fz-juelich.de/record/187363/files/FZJ-2015-01034.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000187363 8564_ $$uhttps://juser.fz-juelich.de/record/187363/files/FZJ-2015-01034.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000187363 909CO $$ooai:juser.fz-juelich.de:187363$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 000187363 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000187363 9141_ $$y2015 000187363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000187363 9130_ $$0G:(DE-HGF)POF2-412$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vGrid Technologies and Infrastructures$$x0 000187363 9131_ $$0G:(DE-HGF)POF3-512$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vData-Intensive Science and Federated Computing$$x0 000187363 920__ $$lyes 000187363 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000187363 980__ $$aconf 000187363 980__ $$aVDB 000187363 980__ $$aUNRESTRICTED 000187363 980__ $$aFullTexts 000187363 980__ $$aI:(DE-Juel1)JSC-20090406 000187363 980__ $$aOPENSCIENCE 000187363 9801_ $$aFullTexts