000187386 001__ 187386
000187386 005__ 20240610121125.0
000187386 0247_ $$2doi$$a10.1016/j.ultramic.2014.01.006
000187386 0247_ $$2WOS$$aWOS:000332531400006
000187386 037__ $$aFZJ-2015-01057
000187386 041__ $$aEnglish
000187386 082__ $$a570
000187386 1001_ $$0P:(DE-HGF)0$$aXin, Huolin L.$$b0$$eCorresponding Author
000187386 245__ $$aIs there a Stobbs factor in atomic-resolution STEM-EELS mapping?
000187386 260__ $$aAmsterdam$$bElsevier Science$$c2014
000187386 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1422541787_8065
000187386 3367_ $$2DataCite$$aOutput Types/Journal article
000187386 3367_ $$00$$2EndNote$$aJournal Article
000187386 3367_ $$2BibTeX$$aARTICLE
000187386 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000187386 3367_ $$2DRIVER$$aarticle
000187386 520__ $$aRecent work has convincingly argued that the Stobbs factor—disagreement in contrast between simulated and experimental atomic-resolution images—in ADF-STEM imaging can be accounted for by including the incoherent source size in simulation. However, less progress has been made for atomic-resolution STEM-EELS mapping. Here we have performed carefully calibrated EELS mapping experiments of a [101] DyScO3 single-crystal specimen, allowing atomic-resolution EELS signals to be extracted on an absolute scale for a large range of thicknesses. By simultaneously recording the elastic signal, also on an absolute scale, and using it to characterize the source size, sample thickness and inelastic mean free path, we eliminate all free parameters in the simulation of the core-loss signals. Coupled with double channeling simulations that incorporate both core-loss inelastic scattering and dynamical elastic and thermal diffuse scattering, the present work enables a close scrutiny of the scattering physics in the inelastic channel. We found that by taking into account the effective source distribution determined from the ADF images, both the absolute signal and the contrast in atomic-resolution Dy-M5 maps can be closely reproduced by the double-channeling simulations. At lower energy losses, discrepancies are present in the Sc-L2,3 and Dy-N4,5 maps due to the energy-dependent spatial distribution of the background spectrum, core-hole effects, and omitted complexities in the final states. This work has demonstrated the possibility of using quantitative STEM-EELS for element-specific column-by-column atom counting at higher energy losses and for atomic-like final states, and has elucidated several possible improvements for future theoretical work.
000187386 536__ $$0G:(DE-HGF)POF2-42G41$$a42G - Peter Grünberg-Centre (PG-C) (POF2-42G41)$$cPOF2-42G41$$fPOF II$$x0
000187386 7001_ $$0P:(DE-Juel1)159157$$aDwyer, Christian$$b1$$ufzj
000187386 7001_ $$0P:(DE-Juel1)166093$$aMüller, David$$b2$$ufzj
000187386 773__ $$0PERI:(DE-600)1479043-9$$a10.1016/j.ultramic.2014.01.006$$p38-46$$tUltramicroscopy$$v139$$x0304-3991$$y2014
000187386 8564_ $$uhttps://juser.fz-juelich.de/record/187386/files/FZJ-2015-01057.pdf$$yRestricted
000187386 909CO $$ooai:juser.fz-juelich.de:187386$$pVDB
000187386 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159157$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000187386 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166093$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000187386 9132_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000187386 9131_ $$0G:(DE-HGF)POF2-42G41$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vPeter Grünberg-Centre (PG-C)$$x0
000187386 9141_ $$y2014
000187386 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000187386 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000187386 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000187386 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000187386 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000187386 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000187386 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000187386 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000187386 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000187386 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000187386 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000187386 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000187386 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000187386 920__ $$lyes
000187386 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000187386 980__ $$ajournal
000187386 980__ $$aVDB
000187386 980__ $$aI:(DE-Juel1)PGI-5-20110106
000187386 980__ $$aUNRESTRICTED
000187386 981__ $$aI:(DE-Juel1)ER-C-1-20170209