000187412 001__ 187412
000187412 005__ 20240619092059.0
000187412 0247_ $$2pmid$$apmid:23349207
000187412 0247_ $$2pmc$$apmc:PMC3606002
000187412 0247_ $$2WOS$$aWOS:000316462600011
000187412 0247_ $$2ISSN$$a1539-7262
000187412 0247_ $$2ISSN$$a0022-2275
000187412 0247_ $$2doi$$a10.1194/jlr.M032763
000187412 0247_ $$2MLZ$$aGogonea01042013
000187412 0247_ $$2altmetric$$aaltmetric:21631288
000187412 037__ $$aPreJuSER-187412
000187412 041__ $$aeng
000187412 082__ $$a540
000187412 1001_ $$0P:(DE-HGF)0$$aGogonea, V.$$b0$$eCorresponding Author
000187412 245__ $$aThe low-resolution structure of nHDL reconstituted with DMPC with and without cholesterol reveals a mechanism for particle expansion
000187412 260__ $$aBethesda, Md.$$bASBMB$$c2013
000187412 300__ $$a966-983
000187412 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal
000187412 3367_ $$2DataCite$$aOutput Types/Journal article
000187412 3367_ $$00$$2EndNote$$aJournal Article
000187412 3367_ $$2BibTeX$$aARTICLE
000187412 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000187412 3367_ $$2DRIVER$$aarticle
000187412 440_0 $$aJournal of Lipid Research
000187412 500__ $$aRecord converted 2014-10-14 05:10:08
000187412 520__ $$aSmall-angle neutron scattering (SANS) with contrast variation was used to obtain the low-resolution structure of nascent HDL (nHDL) reconstituted with dimyristoyl phosphatidylcholine (DMPC) in the absence and presence of cholesterol, [apoA1:DMPC (1:80, mol:mol) and apoA1:DMPC:cholesterol (1:86:9, mol:mol:mol)]. The overall shape of both particles is discoidal with the low-resolution structure of apoA1 visualized as an open, contorted, and out of plane conformation with three arms in nascent HDL/dimyristoyl phosphatidylcholine without cholesterol (nHDL(DMPC)) and two arms in nascent HDL/dimyristoyl phosphatidylcholine with cholesterol (nHDL(DMPC+Chol)). The low-resolution shape of the lipid phase in both nHDL(DMPC) and nHDL(DMPC+Chol) were oblate ellipsoids, and fit well within their respective protein shapes. Modeling studies indicate that apoA1 is folded onto itself in nHDL(DMPC), making a large hairpin, which was also confirmed independently by both cross-linking mass spectrometry and hydrogen-deuterium exchange (HDX) mass spectrometry analyses. In nHDL(DMPC+Chol), the lipid was expanded and no hairpin was visible. Importantly, despite the overall discoidal shape of the whole particle in both nHDL(DMPC) and nHDL(DMPC+Chol), an open conformation (i.e., not a closed belt) of apoA1 is observed. Collectively, these data show that full length apoA1 retains an open architecture that is dictated by its lipid cargo. The lipid is likely predominantly organized as a bilayer with a micelle domain between the open apoA1 arms. The apoA1 configuration observed suggests a mechanism for accommodating changing lipid cargo by quantized expansion of hairpin structures.
000187412 536__ $$0G:(DE-HGF)POF2-54G24$$a54G - JCNS (POF2-54G24)$$cPOF2-54G24$$fPOF II$$x0
000187412 588__ $$aDataset connected to Pubmed
000187412 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000187412 650_2 $$2MeSH$$aApolipoprotein A-I: chemistry
000187412 650_2 $$2MeSH$$aCholesterol: chemistry
000187412 650_2 $$2MeSH$$aDimyristoylphosphatidylcholine: chemistry
000187412 650_2 $$2MeSH$$aHigh-Density Lipoproteins, Pre-beta: chemistry
000187412 650_2 $$2MeSH$$aHumans
000187412 650_2 $$2MeSH$$aMass Spectrometry
000187412 650_2 $$2MeSH$$aScattering, Small Angle
000187412 650_7 $$00$$2NLM Chemicals$$aApolipoprotein A-I
000187412 650_7 $$00$$2NLM Chemicals$$aHigh-Density Lipoproteins, Pre-beta
000187412 650_7 $$097C5T2UQ7J$$2NLM Chemicals$$aCholesterol
000187412 650_7 $$0U86ZGC74V5$$2NLM Chemicals$$aDimyristoylphosphatidylcholine
000187412 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000187412 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x2
000187412 65017 $$0V:(DE-MLZ)GC-130-1$$2V:(DE-HGF)$$aHealth and Life$$x1
000187412 65017 $$0V:(DE-MLZ)GC-130$$2V:(DE-HGF)$$aLife Science and Health$$x0
000187412 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000187412 7001_ $$0P:(DE-HGF)0$$aGerstenecker, G. S.$$b1
000187412 7001_ $$0P:(DE-HGF)0$$aGerstenecker, G. S.$$b1
000187412 7001_ $$0P:(DE-HGF)0$$aWu, Z.$$b2
000187412 7001_ $$0P:(DE-HGF)0$$aLee, X.$$b3
000187412 7001_ $$0P:(DE-HGF)0$$aTopbas, C.$$b4
000187412 7001_ $$0P:(DE-HGF)0$$aWagner, M. A.$$b5
000187412 7001_ $$0P:(DE-HGF)0$$aTallant, T. C.$$b6
000187412 7001_ $$0P:(DE-HGF)0$$aSmith, J. D.$$b7
000187412 7001_ $$0P:(DE-HGF)0$$aCallow, P.$$b8
000187412 7001_ $$0P:(DE-Juel1)130893$$aPipich, V.$$b9$$ufzj
000187412 7001_ $$0P:(DE-HGF)0$$aMalet, H.$$b10
000187412 7001_ $$0P:(DE-HGF)0$$aSchoehn, G.$$b11
000187412 7001_ $$0P:(DE-HGF)0$$aDiDonato, J. A.$$b12
000187412 7001_ $$0P:(DE-HGF)0$$aHazen, S. L.$$b13
000187412 773__ $$0PERI:(DE-600)1466675-3$$a10.1194/jlr.M032763$$gVol. 54, no. 4, p. 966 - 983$$n4$$p966 - 983$$tJournal of lipid research$$v54$$x0022-2275$$y2013
000187412 8564_ $$uhttp://www.jlr.org/content/54/4/966.abstract
000187412 8564_ $$uhttp://www.jlr.org/content/early/2013/01/23/jlr.M032763.short
000187412 8564_ $$uhttps://juser.fz-juelich.de/record/187412/files/FZJ-2015-01081.pdf$$yRestricted
000187412 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606002
000187412 909CO $$ooai:juser.fz-juelich.de:187412$$pVDB$$pVDB:MLZ
000187412 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000187412 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000187412 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000187412 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000187412 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000187412 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000187412 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000187412 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000187412 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000187412 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000187412 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000187412 9141_ $$y2014
000187412 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130893$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000187412 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000187412 9131_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vJCNS$$x0
000187412 9201_ $$0I:(DE-MLZ)4128$$kKWS1$$lKWS1$$x0
000187412 980__ $$ajournal
000187412 980__ $$aI:(DE-MLZ)4128
000187412 980__ $$aConvertedRecord
000187412 980__ $$ajournal
000187412 980__ $$aVDB
000187412 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000187412 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000187412 980__ $$aI:(DE-Juel1)ICS-1-20110106
000187412 980__ $$aUNRESTRICTED
000187412 981__ $$aI:(DE-Juel1)IBI-8-20200312
000187412 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000187412 981__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000187412 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000187412 981__ $$aI:(DE-Juel1)ICS-1-20110106