001     187515
005     20240712101012.0
024 7 _ |a 10.1021/ja507146s
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a WOS:000344516600029
|2 WOS
024 7 _ |a altmetric:21102450
|2 altmetric
024 7 _ |a pmid:25283472
|2 pmid
037 _ _ |a FZJ-2015-01144
082 _ _ |a 540
100 1 _ |a Rissanen, Matti P.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a The Formation of Highly Oxidized Multifunctional Products in the Ozonolysis of Cyclohexene
260 _ _ |a Washington, DC
|c 2014
|b American Chemical Society
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1422625332_18301
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The prompt formation of highly oxidized organic compounds in the ozonolysis of cyclohexene (C6H10) was investigated by means of laboratory experiments together with quantum chemical calculations. The experiments were performed in borosilicate glass flow tube reactors coupled to a chemical ionization atmospheric pressure interface time-of-flight mass spectrometer with a nitrate ion (NO3–)-based ionization scheme. Quantum chemical calculations were performed at the CCSD(T)-F12a/VDZ-F12//ωB97XD/aug-cc-pVTZ level, with kinetic modeling using multiconformer transition state theory, including Eckart tunneling corrections. The complementary investigation methods gave a consistent picture of a formation mechanism advancing by peroxy radical (RO2) isomerization through intramolecular hydrogen shift reactions, followed by sequential O2 addition steps, that is, RO2 autoxidation, on a time scale of seconds. Dimerization of the peroxy radicals by recombination and cross-combination reactions is in competition with the formation of highly oxidized monomer species and is observed to lead to peroxides, potentially diacyl peroxides. The molar yield of these highly oxidized products (having O/C > 1 in monomers and O/C > 0.55 in dimers) from cyclohexene ozonolysis was determined as (4.5 ± 3.8)%. Fully deuterated cyclohexene and cis-6-nonenal ozonolysis, as well as the influence of water addition to the system (either H2O or D2O), were also investigated in order to strengthen the arguments on the proposed mechanism. Deuterated cyclohexene ozonolysis resulted in a less oxidized product distribution with a lower yield of highly oxygenated products and cis-6-nonenal ozonolysis generated the same monomer product distribution, consistent with the proposed mechanism and in agreement with quantum chemical modeling.
536 _ _ |a 233 - Trace gas and aerosol processes in the troposphere (POF2-233)
|0 G:(DE-HGF)POF2-233
|c POF2-233
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Kurtén, Theo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sipilä, Mikko
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Thornton, Joel A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kangasluoma, Juha
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sarnela, Nina
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Junninen, Heikki
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Jørgensen, Solvejg
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Schallhart, Simon
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kajos, Maija K.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Taipale, Risto
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Springer, Monika
|0 P:(DE-Juel1)142073
|b 11
|u fzj
700 1 _ |a Mentel, Thomas F.
|0 P:(DE-Juel1)16346
|b 12
|u fzj
700 1 _ |a Ruuskanen, Taina
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Petäjä, Tuukka
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Worsnop, Douglas R.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Kjaergaard, Henrik G.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Ehn, Mikael
|0 P:(DE-HGF)0
|b 17
773 _ _ |a 10.1021/ja507146s
|g Vol. 136, no. 44, p. 15596 - 15606
|0 PERI:(DE-600)1472210-0
|n 44
|p 15596 - 15606
|t Journal of the American Chemical Society
|v 136
|y 2014
|x 1520-5126
856 4 _ |u https://juser.fz-juelich.de/record/187515/files/FZJ-2015-01144.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:187515
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)142073
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)16346
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Tropospheric trace substances and their transformation processes
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF2-230
|0 G:(DE-HGF)POF2-233
|2 G:(DE-HGF)POF2-200
|v Trace gas and aerosol processes in the troposphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21