001     187532
005     20240619091943.0
024 7 _ |a 10.1021/ma501520u
|2 doi
024 7 _ |a 0024-9297
|2 ISSN
024 7 _ |a 1520-5835
|2 ISSN
024 7 _ |a WOS:000345552700024
|2 WOS
037 _ _ |a FZJ-2015-01161
082 _ _ |a 540
100 1 _ |a Hofmann, M.
|0 P:(DE-Juel1)145571
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Field-Cycling NMR Relaxometry Probing the Microscopic Dynamics in Polymer Melts
260 _ _ |a Washington, DC
|c 2014
|b Soc.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1422618663_17573
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Field-cycling (FC) 1H and 2H NMR relaxometry is applied to linear polybutadiene (PB) of different molar mass (M) in order to test current polymer theories. Applying earth field compensation, five decades in the frequency dependence of the spin–lattice relaxation rate T1–1(ν) = R1(ν) are accessed (200 Hz - 30 MHz), and we focus on the crossover from Rouse to entanglement dynamics. A refined evaluation is presented, which avoids application of frequency–temperature superposition as well as Fourier transformation. Instead, the power-law exponent ε in the entanglement regime is directly determined from the susceptibility representation χNMR″(ω) = ω/T1(ω) ∝ ωε by a derivative method. Correspondingly, a power-law t–ε characterizes the decay in the time domain, i.e., the dipolar correlation function. For the total 1H relaxation, comprising intra- and intermolecular relaxation, a high-M exponent εtotal = 0.31 ± 0.03 is found. An isotope dilution experiment, which yields the intramolecular relaxation reflecting solely segmental reorientation, provides an exponent εintra = 0.44 ± 0.03. It agrees with that of FC 2H NMR (εQ = 0.42 ± 0.03) probing only segmental reorientation. The fact that εintra > εtotal demonstrates the relevance of intermolecular relaxation in the entanglement regime (but not in the Rouse regime), and εintra is significantly higher than predicted by the tube-reptation (TR) model (εTR = 0.25) and, the latter being supported also by recent simulations. The ratio of inter- to intramolecular relaxation grows with decreasing frequency, again in contradiction to the TR model and results from double quantum 1H NMR. We conclude that no clear evidence of a tube is found on the microscopic level and the so-called return-to-origin hypothesis is not confirmed. Studying the influence of chain end dynamics by FC 1H NMR we compare differently chain end deuterated PB. For the dynamics of the central part of the polymer the exponent drops from εintra = 0.66 ± 0.03 down to εcent = 0.41 ± 0.03 for M = 29k which is very close to the high-M value εintra. Thus, the protracted transition to entanglement dynamics reported before is not found when the polymer center is probed; instead full entanglement dynamics appears to set in directly with M > Me.
536 _ _ |a 451 - Soft Matter Composites (POF2-451)
|0 G:(DE-HGF)POF2-451
|c POF2-451
|f POF II
|x 0
536 _ _ |a 54G - JCNS (POF2-54G24)
|0 G:(DE-HGF)POF2-54G24
|c POF2-54G24
|f POF II
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Kresse, B.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Privalov, A. F.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Willner, L.
|0 P:(DE-Juel1)131036
|b 3
|u fzj
700 1 _ |a Fatkullin, N.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Fujara, F.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Rössler, E. A.
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1021/ma501520u
|g Vol. 47, no. 22, p. 7917 - 7929
|0 PERI:(DE-600)1491942-4
|n 22
|p 7917 - 7929
|t Macromolecules
|v 47
|y 2014
|x 1520-5835
856 4 _ |u https://juser.fz-juelich.de/record/187532/files/FZJ-2015-01161.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:187532
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145571
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131036
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 1
913 2 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6215
|x 2
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-450
|0 G:(DE-HGF)POF2-451
|2 G:(DE-HGF)POF2-400
|v Soft Matter Composites
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l BioSoft
913 1 _ |a DE-HGF
|b Struktur der Materie
|1 G:(DE-HGF)POF2-540
|0 G:(DE-HGF)POF2-54G24
|2 G:(DE-HGF)POF2-500
|v JCNS
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
920 1 _ |0 I:(DE-Juel1)ICS-1-20110106
|k ICS-1
|l Neutronenstreuung
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k Neutronenstreuung ; JCNS-1
|l Neutronenstreuung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-1-20110106
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-8-20200312
981 _ _ |a I:(DE-Juel1)JCNS-1-20110106
981 _ _ |a I:(DE-Juel1)JCNS-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21