Home > Publications database > Field-Cycling NMR Relaxometry Probing the Microscopic Dynamics in Polymer Melts > print |
001 | 187532 | ||
005 | 20240619091943.0 | ||
024 | 7 | _ | |a 10.1021/ma501520u |2 doi |
024 | 7 | _ | |a 0024-9297 |2 ISSN |
024 | 7 | _ | |a 1520-5835 |2 ISSN |
024 | 7 | _ | |a WOS:000345552700024 |2 WOS |
037 | _ | _ | |a FZJ-2015-01161 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Hofmann, M. |0 P:(DE-Juel1)145571 |b 0 |e Corresponding Author |u fzj |
245 | _ | _ | |a Field-Cycling NMR Relaxometry Probing the Microscopic Dynamics in Polymer Melts |
260 | _ | _ | |a Washington, DC |c 2014 |b Soc. |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1422618663_17573 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a Field-cycling (FC) 1H and 2H NMR relaxometry is applied to linear polybutadiene (PB) of different molar mass (M) in order to test current polymer theories. Applying earth field compensation, five decades in the frequency dependence of the spin–lattice relaxation rate T1–1(ν) = R1(ν) are accessed (200 Hz - 30 MHz), and we focus on the crossover from Rouse to entanglement dynamics. A refined evaluation is presented, which avoids application of frequency–temperature superposition as well as Fourier transformation. Instead, the power-law exponent ε in the entanglement regime is directly determined from the susceptibility representation χNMR″(ω) = ω/T1(ω) ∝ ωε by a derivative method. Correspondingly, a power-law t–ε characterizes the decay in the time domain, i.e., the dipolar correlation function. For the total 1H relaxation, comprising intra- and intermolecular relaxation, a high-M exponent εtotal = 0.31 ± 0.03 is found. An isotope dilution experiment, which yields the intramolecular relaxation reflecting solely segmental reorientation, provides an exponent εintra = 0.44 ± 0.03. It agrees with that of FC 2H NMR (εQ = 0.42 ± 0.03) probing only segmental reorientation. The fact that εintra > εtotal demonstrates the relevance of intermolecular relaxation in the entanglement regime (but not in the Rouse regime), and εintra is significantly higher than predicted by the tube-reptation (TR) model (εTR = 0.25) and, the latter being supported also by recent simulations. The ratio of inter- to intramolecular relaxation grows with decreasing frequency, again in contradiction to the TR model and results from double quantum 1H NMR. We conclude that no clear evidence of a tube is found on the microscopic level and the so-called return-to-origin hypothesis is not confirmed. Studying the influence of chain end dynamics by FC 1H NMR we compare differently chain end deuterated PB. For the dynamics of the central part of the polymer the exponent drops from εintra = 0.66 ± 0.03 down to εcent = 0.41 ± 0.03 for M = 29k which is very close to the high-M value εintra. Thus, the protracted transition to entanglement dynamics reported before is not found when the polymer center is probed; instead full entanglement dynamics appears to set in directly with M > Me. |
536 | _ | _ | |a 451 - Soft Matter Composites (POF2-451) |0 G:(DE-HGF)POF2-451 |c POF2-451 |f POF II |x 0 |
536 | _ | _ | |a 54G - JCNS (POF2-54G24) |0 G:(DE-HGF)POF2-54G24 |c POF2-54G24 |f POF II |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |a Kresse, B. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Privalov, A. F. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Willner, L. |0 P:(DE-Juel1)131036 |b 3 |u fzj |
700 | 1 | _ | |a Fatkullin, N. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Fujara, F. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Rössler, E. A. |0 P:(DE-HGF)0 |b 6 |
773 | _ | _ | |a 10.1021/ma501520u |g Vol. 47, no. 22, p. 7917 - 7929 |0 PERI:(DE-600)1491942-4 |n 22 |p 7917 - 7929 |t Macromolecules |v 47 |y 2014 |x 1520-5835 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/187532/files/FZJ-2015-01161.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:187532 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)145571 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)131036 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-551 |2 G:(DE-HGF)POF3-500 |v Functional Macromolecules and Complexes |x 0 |
913 | 2 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-623 |2 G:(DE-HGF)POF3-600 |v Facility topic: Neutrons for Research on Condensed Matter |9 G:(DE-HGF)POF3-6G4 |x 1 |
913 | 2 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-621 |2 G:(DE-HGF)POF3-600 |v In-house research on the structure, dynamics and function of matter |9 G:(DE-HGF)POF3-6215 |x 2 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |1 G:(DE-HGF)POF2-450 |0 G:(DE-HGF)POF2-451 |2 G:(DE-HGF)POF2-400 |v Soft Matter Composites |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l BioSoft |
913 | 1 | _ | |a DE-HGF |b Struktur der Materie |1 G:(DE-HGF)POF2-540 |0 G:(DE-HGF)POF2-54G24 |2 G:(DE-HGF)POF2-500 |v JCNS |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l Forschung mit Photonen, Neutronen, Ionen |
914 | 1 | _ | |y 2014 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-1-20110106 |k ICS-1 |l Neutronenstreuung |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-1-20110106 |k Neutronenstreuung ; JCNS-1 |l Neutronenstreuung |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ICS-1-20110106 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-1-20110106 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IBI-8-20200312 |
981 | _ | _ | |a I:(DE-Juel1)JCNS-1-20110106 |
981 | _ | _ | |a I:(DE-Juel1)JCNS-1-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|