000187571 001__ 187571
000187571 005__ 20210129215036.0
000187571 0247_ $$2doi$$a10.5194/acp-15-1071-2015
000187571 0247_ $$2ISSN$$a1680-7316
000187571 0247_ $$2ISSN$$a1680-7324
000187571 0247_ $$2Handle$$a2128/8366
000187571 0247_ $$2WOS$$aWOS:000351170000019
000187571 0247_ $$2altmetric$$aaltmetric:5442416
000187571 037__ $$aFZJ-2015-01199
000187571 082__ $$a550
000187571 1001_ $$0P:(DE-HGF)0$$aOrr, A.$$b0$$eCorresponding Author
000187571 245__ $$aInclusion of mountain-wave-induced cooling for the formation of PSCs over the Antarctic Peninsula in a chemistry-climate model
000187571 260__ $$aKatlenburg-Lindau$$bEGU$$c2015
000187571 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1430224444_26981
000187571 3367_ $$2DataCite$$aOutput Types/Journal article
000187571 3367_ $$00$$2EndNote$$aJournal Article
000187571 3367_ $$2BibTeX$$aARTICLE
000187571 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000187571 3367_ $$2DRIVER$$aarticle
000187571 520__ $$aAn important source of polar stratospheric clouds (PSCs), which play a crucial role in controlling polar stratospheric ozone depletion, is from the temperature fluctuations induced by mountain waves. However, this formation mechanism is usually missing in chemistry–climate models because these temperature fluctuations are neither resolved nor parameterised. Here, we investigate the representation of stratospheric mountain-wave-induced temperature fluctuations by the UK Met Office Unified Model (UM) at climate scale and mesoscale against Atmospheric Infrared Sounder satellite observations for three case studies over the Antarctic Peninsula. At a high horizontal resolution (4 km) the regional mesoscale configuration of the UM correctly simulates the magnitude, timing, and location of the measured temperature fluctuations. By comparison, at a low horizontal resolution (2.5° × 3.75°) the global climate configuration fails to resolve such disturbances. However, it is demonstrated that the temperature fluctuations computed by a mountain wave parameterisation scheme inserted into the climate configuration (which computes the temperature fluctuations due to unresolved mountain waves) are in relatively good agreement with the mesoscale configuration responses for two of the three case studies. The parameterisation was used to include the simulation of mountain-wave-induced PSCs in the global chemistry–climate configuration of the UM. A subsequent sensitivity study demonstrated that regional PSCs increased by up to 50% during July over the Antarctic Peninsula following the inclusion of the local mountain-wave-induced cooling phase.
000187571 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000187571 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000187571 7001_ $$0P:(DE-HGF)0$$aHosking, J. S.$$b1
000187571 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, L.$$b2
000187571 7001_ $$0P:(DE-HGF)0$$aKeeble, J.$$b3
000187571 7001_ $$0P:(DE-HGF)0$$aDean, S. M.$$b4
000187571 7001_ $$0P:(DE-HGF)0$$aRoscoe, H. K.$$b5
000187571 7001_ $$0P:(DE-HGF)0$$aAbraham, N. L.$$b6
000187571 7001_ $$0P:(DE-HGF)0$$aVosper, S.$$b7
000187571 7001_ $$0P:(DE-HGF)0$$aBraesicke, P.$$b8
000187571 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-15-1071-2015$$gVol. 15, no. 2, p. 1071 - 1086$$n2$$p1071 - 1086$$tAtmospheric chemistry and physics$$v15$$x1680-7324$$y2015
000187571 8564_ $$uhttps://juser.fz-juelich.de/record/187571/files/FZJ-2015-01199.pdf$$yOpenAccess
000187571 909CO $$ooai:juser.fz-juelich.de:187571$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000187571 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000187571 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000187571 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000187571 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000187571 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000187571 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000187571 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000187571 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000187571 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000187571 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000187571 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000187571 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000187571 9141_ $$y2015
000187571 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000187571 9130_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000187571 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000187571 920__ $$lyes
000187571 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000187571 980__ $$ajournal
000187571 980__ $$aVDB
000187571 980__ $$aI:(DE-Juel1)JSC-20090406
000187571 980__ $$aUNRESTRICTED
000187571 980__ $$aFullTexts
000187571 9801_ $$aFullTexts