000187617 001__ 187617
000187617 005__ 20250129092425.0
000187617 037__ $$aFZJ-2015-01243
000187617 041__ $$aEnglish
000187617 1001_ $$0P:(DE-Juel1)133959$$aWüstner, Peter$$b0$$eCorresponding Author$$ufzj
000187617 1112_ $$aIEEE Realtime Conference$$cNara$$d2014-05-25 - 2014-05-30$$gRT2014$$wJapan
000187617 245__ $$aThe Use of USB 3.0 for Fast Data Transfer in a Plant PET Detector
000187617 260__ $$c2014
000187617 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1434008055_12155$$xOther
000187617 3367_ $$033$$2EndNote$$aConference Paper
000187617 3367_ $$2DataCite$$aOutput Types/Conference Poster
000187617 3367_ $$2DRIVER$$aconferenceObject
000187617 3367_ $$2ORCID$$aCONFERENCE_POSTER
000187617 3367_ $$2BibTeX$$aINPROCEEDINGS
000187617 520__ $$aThe Research Centre Juelich is developing a PET detector for plant phenotyping together with Philips Digital PhotonCounting, Aachen. The scientific goal is to study the carbon transport in plants. The poster will give an overview overthe whole project, but will focus on the use of USB 3.0 to transfer data from the FPGA to the acquisition computer. Todetect the photon pairs we use a ring of digital photon counters recently developed by Philips.For the prototype we decided to use a Xilinx Kintex evaluation board for data concentration and processing of thecoincidences. It is assumed that the necessary data rate from the FPGA to the acquisition computer is about 300MByte/s. As data link a 10-gigabit Ethernet link would be preferred, but the evaluation board contains a USB 3.0interface already, therefore we chose to use this one in order to reduce the development costs. The poster will discussthe pros and cons of the use of USB for data acquisition and the results achieved so far.
000187617 536__ $$0G:(DE-HGF)POF2-89582$$a89582 - Plant Science (POF2-89582)$$cPOF2-89582$$fPOF II T$$x0
000187617 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
000187617 7001_ $$0P:(DE-Juel1)130632$$aErven, Andreas$$b1$$ufzj
000187617 7001_ $$0P:(DE-Juel1)156472$$aJokhovets, Lioubov$$b2$$ufzj
000187617 7001_ $$0P:(DE-Juel1)133902$$aKemmerling, Günter$$b3$$ufzj
000187617 7001_ $$0P:(DE-Juel1)133922$$aNöldgen, Holger$$b4$$ufzj
000187617 7001_ $$0P:(DE-Juel1)133944$$aStreun, Matthias$$b5$$ufzj
000187617 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b6$$ufzj
000187617 773__ $$y2014
000187617 909CO $$ooai:juser.fz-juelich.de:187617$$pVDB
000187617 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133959$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000187617 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130632$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000187617 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156472$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000187617 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133902$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000187617 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133922$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000187617 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133944$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000187617 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000187617 9132_ $$0G:(DE-HGF)POF2-89582$$1G:(DE-HGF)POF2-89580$$2G:(DE-HGF)POF3-890$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000187617 9131_ $$0G:(DE-HGF)POF2-89582$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vPlant Science$$x0
000187617 9141_ $$y2015
000187617 920__ $$lyes
000187617 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000187617 980__ $$aposter
000187617 980__ $$aVDB
000187617 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000187617 980__ $$aUNRESTRICTED
000187617 981__ $$aI:(DE-Juel1)PGI-4-20110106