000187623 001__ 187623
000187623 005__ 20210129215048.0
000187623 0247_ $$2doi$$a10.1002/celc.201402106
000187623 0247_ $$2WOS$$aWOS:000340523300005
000187623 0247_ $$2altmetric$$aaltmetric:2568346
000187623 037__ $$aFZJ-2015-01249
000187623 082__ $$a540
000187623 1001_ $$0P:(DE-HGF)0$$aTappertzhofen, Stefan$$b0$$eCorresponding Author
000187623 245__ $$aImpact of the Counter-Electrode Material on Redox Processes in Resistive Switching Memories
000187623 260__ $$aWeinheim$$bWiley-VCH$$c2014
000187623 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1422860527_13703
000187623 3367_ $$2DataCite$$aOutput Types/Journal article
000187623 3367_ $$00$$2EndNote$$aJournal Article
000187623 3367_ $$2BibTeX$$aARTICLE
000187623 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000187623 3367_ $$2DRIVER$$aarticle
000187623 520__ $$aCation-based resistive-switching memories rely on the injection and drift of metal ions in nanoscale thin films. In insulators that do not initially contain mobile cations, such as SiO2, Ta2O5, and so forth, water redox reactions occurring at the counter electrode (CE) were found to be essential in enabling the dissolution of the active electrode and to keep electroneutrality. In this study, we report on the impact of the CE on redox processes prior to resistive switching. Potentiodynamic measurements for various electrode materials revealed that the catalytic activity of the CE towards the water redox process determines the concentration of dissolved ions within the oxide and influences the rate of the total cell reaction. This trend can be used as an indicator for the design of both cation- and anion-conducting oxide-based resistive-switching random-access memories.
000187623 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000187623 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000187623 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b1$$ufzj
000187623 7001_ $$0P:(DE-Juel1)131014$$aValov, Ilia$$b2$$ufzj
000187623 773__ $$0PERI:(DE-600)2724978-5$$a10.1002/celc.201402106$$gVol. 1, no. 8, p. 1287 - 1292$$n8$$p1287 - 1292$$tChemElectroChem$$v1$$x2196-0216$$y2014
000187623 909CO $$ooai:juser.fz-juelich.de:187623$$pVDB
000187623 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000187623 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000187623 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000187623 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000187623 9141_ $$y2014
000187623 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000187623 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131014$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000187623 9132_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000187623 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000187623 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000187623 980__ $$ajournal
000187623 980__ $$aVDB
000187623 980__ $$aI:(DE-Juel1)PGI-7-20110106
000187623 980__ $$aUNRESTRICTED