001     187623
005     20210129215048.0
024 7 _ |2 doi
|a 10.1002/celc.201402106
024 7 _ |2 WOS
|a WOS:000340523300005
024 7 _ |a altmetric:2568346
|2 altmetric
037 _ _ |a FZJ-2015-01249
082 _ _ |a 540
100 1 _ |0 P:(DE-HGF)0
|a Tappertzhofen, Stefan
|b 0
|e Corresponding Author
245 _ _ |a Impact of the Counter-Electrode Material on Redox Processes in Resistive Switching Memories
260 _ _ |a Weinheim
|b Wiley-VCH
|c 2014
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1422860527_13703
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Cation-based resistive-switching memories rely on the injection and drift of metal ions in nanoscale thin films. In insulators that do not initially contain mobile cations, such as SiO2, Ta2O5, and so forth, water redox reactions occurring at the counter electrode (CE) were found to be essential in enabling the dissolution of the active electrode and to keep electroneutrality. In this study, we report on the impact of the CE on redox processes prior to resistive switching. Potentiodynamic measurements for various electrode materials revealed that the catalytic activity of the CE towards the water redox process determines the concentration of dissolved ions within the oxide and influences the rate of the total cell reaction. This trend can be used as an indicator for the design of both cation- and anion-conducting oxide-based resistive-switching random-access memories.
536 _ _ |0 G:(DE-HGF)POF2-421
|a 421 - Frontiers of charge based Electronics (POF2-421)
|c POF2-421
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)131022
|a Waser, R.
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)131014
|a Valov, Ilia
|b 2
|u fzj
773 _ _ |0 PERI:(DE-600)2724978-5
|a 10.1002/celc.201402106
|g Vol. 1, no. 8, p. 1287 - 1292
|n 8
|p 1287 - 1292
|t ChemElectroChem
|v 1
|x 2196-0216
|y 2014
909 C O |o oai:juser.fz-juelich.de:187623
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-HGF)0
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131014
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-521
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Electron Charge-Based Phenomena
|x 0
913 1 _ |0 G:(DE-HGF)POF2-421
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|v Frontiers of charge based Electronics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21