000187765 001__ 187765
000187765 005__ 20240619083507.0
000187765 037__ $$aFZJ-2015-01347
000187765 041__ $$aEnglish
000187765 1001_ $$0P:(DE-Juel1)157698$$aRoa, Rafael$$b0$$eCorresponding Author$$ufzj
000187765 1112_ $$aJülich Soft Matter Days 2014$$cBad Honnef$$d2014-11-11 - 2014-11-14$$wGermany
000187765 245__ $$aUltrafiltration of permeable hard-sphere suspensions
000187765 260__ $$c2014
000187765 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1426854216_11772$$xAfter Call
000187765 3367_ $$033$$2EndNote$$aConference Paper
000187765 3367_ $$2DataCite$$aOutput Types/Conference Poster
000187765 3367_ $$2DRIVER$$aconferenceObject
000187765 3367_ $$2ORCID$$aCONFERENCE_POSTER
000187765 3367_ $$2BibTeX$$aINPROCEEDINGS
000187765 520__ $$aMembrane ultrafiltration is a pressure driven process useful for the separation of brownian par- ticles, like small colloids or nanoparticles, from a solvent or smaller solutes. This process is of high importance for the concentration of protein or small microgel suspensions. In these systems, concentration polarization determines the permeate flux (Figure 1). Concentration polarization is the build-up of solute at the membrane surface due to convective-diffusive trans- port of solute in the boundary layer. The efficiency of the separation process is thus strongly dependent on the hydrodynamic conditions, membrane porosity and colloidal interactions.We present a macroscopic model for cross-flow ultrafiltration, where the suspension is flowing tangentially over the membrane surface. We study filtration of suspensions of neutral permeable particles [1]. The influence of the nature of the particles is reflected through the transport prop- erties of the suspension, such as the concentration-dependent collective diffusion coefficient and the effective suspension viscosity [2,3]. We analyze the efficiency of the filtration process by studying the concentration polarization layer and the permeate flux at different operating conditions (applied transmembrane pressure and shear rate).References[1] R. Roa, E. K. Zholkovskiy and G. Nägele, to be submitted.[2] G. C. Abade, B. Cichocki, M. L. Ekiel-Jez ̇ewska, G. Nägele and E. Wajnryb, J. Chem.Phys. 136, 104902, (2012).[3] E. K. Zholkovskiy, V. N. Shilov, J. H. Masliyah, and M. P. Bondarenko, Can. J. Chem. Eng. 85, 701, (2007).
000187765 536__ $$0G:(DE-HGF)POF2-451$$a451 - Soft Matter Composites (POF2-451)$$cPOF2-451$$fPOF II$$x0
000187765 7001_ $$0P:(DE-HGF)0$$aZholkovskiy, Emiliy K.$$b1
000187765 7001_ $$0P:(DE-Juel1)130858$$aNaegele, Gerhard$$b2$$ufzj
000187765 773__ $$y2014
000187765 909CO $$ooai:juser.fz-juelich.de:187765$$pVDB
000187765 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157698$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000187765 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130858$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000187765 9132_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000187765 9131_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vSoft Matter Composites$$x0
000187765 9141_ $$y2014
000187765 920__ $$lyes
000187765 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000187765 980__ $$aposter
000187765 980__ $$aVDB
000187765 980__ $$aI:(DE-Juel1)ICS-3-20110106
000187765 980__ $$aUNRESTRICTED