001     187765
005     20240619083507.0
037 _ _ |a FZJ-2015-01347
041 _ _ |a English
100 1 _ |a Roa, Rafael
|0 P:(DE-Juel1)157698
|b 0
|e Corresponding Author
|u fzj
111 2 _ |a Jülich Soft Matter Days 2014
|c Bad Honnef
|d 2014-11-11 - 2014-11-14
|w Germany
245 _ _ |a Ultrafiltration of permeable hard-sphere suspensions
260 _ _ |c 2014
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1426854216_11772
|2 PUB:(DE-HGF)
|x After Call
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a Membrane ultrafiltration is a pressure driven process useful for the separation of brownian par- ticles, like small colloids or nanoparticles, from a solvent or smaller solutes. This process is of high importance for the concentration of protein or small microgel suspensions. In these systems, concentration polarization determines the permeate flux (Figure 1). Concentration polarization is the build-up of solute at the membrane surface due to convective-diffusive trans- port of solute in the boundary layer. The efficiency of the separation process is thus strongly dependent on the hydrodynamic conditions, membrane porosity and colloidal interactions.We present a macroscopic model for cross-flow ultrafiltration, where the suspension is flowing tangentially over the membrane surface. We study filtration of suspensions of neutral permeable particles [1]. The influence of the nature of the particles is reflected through the transport prop- erties of the suspension, such as the concentration-dependent collective diffusion coefficient and the effective suspension viscosity [2,3]. We analyze the efficiency of the filtration process by studying the concentration polarization layer and the permeate flux at different operating conditions (applied transmembrane pressure and shear rate).References[1] R. Roa, E. K. Zholkovskiy and G. Nägele, to be submitted.[2] G. C. Abade, B. Cichocki, M. L. Ekiel-Jez ̇ewska, G. Nägele and E. Wajnryb, J. Chem.Phys. 136, 104902, (2012).[3] E. K. Zholkovskiy, V. N. Shilov, J. H. Masliyah, and M. P. Bondarenko, Can. J. Chem. Eng. 85, 701, (2007).
536 _ _ |a 451 - Soft Matter Composites (POF2-451)
|0 G:(DE-HGF)POF2-451
|c POF2-451
|f POF II
|x 0
700 1 _ |a Zholkovskiy, Emiliy K.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Naegele, Gerhard
|0 P:(DE-Juel1)130858
|b 2
|u fzj
773 _ _ |y 2014
909 C O |o oai:juser.fz-juelich.de:187765
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157698
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130858
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-450
|0 G:(DE-HGF)POF2-451
|2 G:(DE-HGF)POF2-400
|v Soft Matter Composites
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l BioSoft
914 1 _ |y 2014
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21