000187771 001__ 187771
000187771 005__ 20210129215103.0
000187771 0247_ $$2doi$$a10.1002/hbm.22745
000187771 0247_ $$2pmid$$apmid:25619891
000187771 0247_ $$2ISSN$$a1065-9471
000187771 0247_ $$2ISSN$$a1097-0193
000187771 0247_ $$2WOS$$aWOS:000353068300020
000187771 0247_ $$2altmetric$$aaltmetric:3111265
000187771 037__ $$aFZJ-2015-01353
000187771 041__ $$aENG
000187771 082__ $$a610
000187771 1001_ $$0P:(DE-HGF)0$$aWang, Jiaojian$$b0
000187771 245__ $$aDetermination of the posterior boundary of Wernicke's area based on multimodal connectivity profiles
000187771 260__ $$aNew York, NY$$bWiley-Liss$$c2015
000187771 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1440149490_15836
000187771 3367_ $$2DataCite$$aOutput Types/Journal article
000187771 3367_ $$00$$2EndNote$$aJournal Article
000187771 3367_ $$2BibTeX$$aARTICLE
000187771 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000187771 3367_ $$2DRIVER$$aarticle
000187771 520__ $$aWernicke's area is one of the most important language regions and has been widely studied in both basic research and clinical neurology. However, its exact anatomy has been controversial. In this study, we proposed to address the anatomy of Wernicke's area by investigating different connectivity profiles. First, the posterior superior temporal gyrus (STG), traditionally called 'Wernicke's area', was parcellated into three component subregions with diffusion MRI. Then, whole-brain anatomical connectivity, resting-state functional connectivity (RSFC) and meta-analytic connectivity modeling (MACM) analyses were used to establish the anatomical, resting-state and task-related coactivation network of each subregion to identify which subregions participated in the language network. In addition, behavioral domain analysis, meta-analyses of semantics, execution speech, and phonology and intraoperative electrical stimulation were used to determine which subregions were involved in language processing. Anatomical connectivity, RSFC and MACM analyses consistently identified that the two anterior subregions in the posterior STG primarily participated in the language network, whereas the most posterior subregion in the temporoparietal junction area primarily participated in the default mode network. Moreover, the behavioral domain analyses, meta-analyses of semantics, execution speech and phonology and intraoperative electrical stimulation mapping also confirmed that only the two anterior subregions were involved in language processing, whereas the most posterior subregion primarily participated in social cognition. Our findings revealed a convergent posterior anatomical border for Wernicke's area and indicated that the brain's functional subregions can be identified on the basis of its specific structural and functional connectivity patterns. Hum Brain Mapp, 2015. © 2014 Wiley Periodicals, Inc.
000187771 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000187771 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de, PubMed,
000187771 7001_ $$0P:(DE-HGF)0$$aFan, Lingzhong$$b1
000187771 7001_ $$0P:(DE-HGF)0$$aWang, Yinyan$$b2
000187771 7001_ $$0P:(DE-HGF)0$$aXu, Wenting$$b3
000187771 7001_ $$0P:(DE-HGF)0$$aJiang, Tao$$b4
000187771 7001_ $$0P:(DE-HGF)0$$aFox, Peter T$$b5
000187771 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b6
000187771 7001_ $$0P:(DE-HGF)0$$aYu, Chunshui$$b7
000187771 7001_ $$0P:(DE-HGF)0$$aJiang, Tianzi$$b8$$eCorresponding author
000187771 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.22745$$gp. n/a - n/a$$n5$$p1908–1924$$tHuman brain mapping$$v36$$x1065-9471$$y2015
000187771 8564_ $$uhttps://juser.fz-juelich.de/record/187771/files/FZJ-2015-01353.pdf$$yRestricted
000187771 909CO $$ooai:juser.fz-juelich.de:187771$$pVDB
000187771 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000187771 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000187771 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000187771 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000187771 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000187771 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000187771 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000187771 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000187771 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000187771 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000187771 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000187771 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000187771 9141_ $$y2015
000187771 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000187771 9130_ $$0G:(DE-HGF)POF2-333$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vPathophysiological Mechanisms of Neurological and Psychiatric Diseases$$x0
000187771 9130_ $$0G:(DE-HGF)POF2-89571$$1G:(DE-HGF)POF2-89570$$2G:(DE-HGF)POF3-890$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x1
000187771 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000187771 920__ $$lyes
000187771 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000187771 980__ $$ajournal
000187771 980__ $$aVDB
000187771 980__ $$aI:(DE-Juel1)INM-1-20090406
000187771 980__ $$aUNRESTRICTED