000187784 001__ 187784
000187784 005__ 20230426083117.0
000187784 0247_ $$2doi$$a10.1103/PhysRevB.91.075301
000187784 0247_ $$2ISSN$$a0163-1829
000187784 0247_ $$2ISSN$$a0556-2805
000187784 0247_ $$2ISSN$$a1095-3795
000187784 0247_ $$2ISSN$$a1098-0121
000187784 0247_ $$2ISSN$$a1550-235X
000187784 0247_ $$2WOS$$aWOS:000348873800002
000187784 0247_ $$2Handle$$a2128/10801
000187784 0247_ $$2altmetric$$aaltmetric:2952899
000187784 037__ $$aFZJ-2015-01362
000187784 082__ $$a530
000187784 1001_ $$0P:(DE-HGF)0$$aHiltunen, Tuukka$$b0$$eCorresponding Author
000187784 245__ $$aCharge-noise tolerant exchange gates of singlet-triplet qubits in asymmetric double quantum dots
000187784 260__ $$aCollege Park, Md.$$bAPS$$c2015
000187784 3367_ $$2DRIVER$$aarticle
000187784 3367_ $$2DataCite$$aOutput Types/Journal article
000187784 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1423227593_4290
000187784 3367_ $$2BibTeX$$aARTICLE
000187784 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000187784 3367_ $$00$$2EndNote$$aJournal Article
000187784 520__ $$aIn the semiconductor double quantum dot singlet-triplet qubit architecture, the decoherence caused by the qubit's charge environment poses a serious obstacle towards large scale quantum computing. The effects of the charge decoherence can be mitigated by operating the qubit in the so-called sweet spot regions where it is insensitive to electrical noise. In this paper, we propose singlet-triplet qubits based on two quantum dots of different sizes. Such asymmetric double quantum dot systems allow the implementation of exchange gates with controllable exchange splitting J operated in the doubly occupied charge region of the larger dot, where the qubit has high resilience to charge noise. In the larger dot, J can be quenched to a value smaller than the intradot tunneling using magnetic fields, while the smaller dot and its larger splitting can be used in the projective readout of the qubit.
000187784 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000187784 542__ $$2Crossref$$i2015-02-03$$uhttp://link.aps.org/licenses/aps-default-license
000187784 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000187784 7001_ $$0P:(DE-HGF)0$$aBluhm, Hendrik$$b1
000187784 7001_ $$0P:(DE-Juel1)145051$$aMehl, Sebastian$$b2$$ufzj
000187784 7001_ $$0P:(DE-HGF)0$$aHarju, Ari$$b3
000187784 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.91.075301$$bAmerican Physical Society (APS)$$d2015-02-03$$n7$$p075301$$tPhysical Review B$$v91$$x1098-0121$$y2015
000187784 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.91.075301$$gVol. 91, no. 7, p. 075301$$n7$$p075301$$tPhysical review / B$$v91$$x1098-0121$$y2015
000187784 8564_ $$uhttps://juser.fz-juelich.de/record/187784/files/PhysRevB.91.075301.pdf$$yOpenAccess
000187784 8564_ $$uhttps://juser.fz-juelich.de/record/187784/files/PhysRevB.91.075301.gif?subformat=icon$$xicon$$yOpenAccess
000187784 8564_ $$uhttps://juser.fz-juelich.de/record/187784/files/PhysRevB.91.075301.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000187784 8564_ $$uhttps://juser.fz-juelich.de/record/187784/files/PhysRevB.91.075301.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000187784 8564_ $$uhttps://juser.fz-juelich.de/record/187784/files/PhysRevB.91.075301.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000187784 909CO $$ooai:juser.fz-juelich.de:187784$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000187784 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145051$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000187784 9130_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vSpin-based and quantum information$$x0
000187784 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000187784 9141_ $$y2015
000187784 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000187784 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000187784 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000187784 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000187784 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000187784 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000187784 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000187784 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000187784 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000187784 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000187784 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000187784 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000187784 920__ $$lyes
000187784 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000187784 980__ $$ajournal
000187784 980__ $$aVDB
000187784 980__ $$aUNRESTRICTED
000187784 980__ $$aI:(DE-Juel1)PGI-2-20110106
000187784 9801_ $$aUNRESTRICTED
000187784 9801_ $$aFullTexts
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.89.147902
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys174
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1116955
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.050502
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1424
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1217692
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.100501
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.030506
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.035315
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature10707
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.146804
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.045304
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.235309
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.161408
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.140502
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.113.150501
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.075319
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/15/10/103015
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.195424
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.88.226804
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.085313
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.134519
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.086804
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.085324
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.205306
000187784 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.035319