| Hauptseite > Publikationsdatenbank > Charge-noise tolerant exchange gates of singlet-triplet qubits in asymmetric double quantum dots > print |
| 001 | 187784 | ||
| 005 | 20230426083117.0 | ||
| 024 | 7 | _ | |a 10.1103/PhysRevB.91.075301 |2 doi |
| 024 | 7 | _ | |a 0163-1829 |2 ISSN |
| 024 | 7 | _ | |a 0556-2805 |2 ISSN |
| 024 | 7 | _ | |a 1095-3795 |2 ISSN |
| 024 | 7 | _ | |a 1098-0121 |2 ISSN |
| 024 | 7 | _ | |a 1550-235X |2 ISSN |
| 024 | 7 | _ | |a WOS:000348873800002 |2 WOS |
| 024 | 7 | _ | |a 2128/10801 |2 Handle |
| 024 | 7 | _ | |a altmetric:2952899 |2 altmetric |
| 037 | _ | _ | |a FZJ-2015-01362 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Hiltunen, Tuukka |0 P:(DE-HGF)0 |b 0 |e Corresponding Author |
| 245 | _ | _ | |a Charge-noise tolerant exchange gates of singlet-triplet qubits in asymmetric double quantum dots |
| 260 | _ | _ | |a College Park, Md. |c 2015 |b APS |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1423227593_4290 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a In the semiconductor double quantum dot singlet-triplet qubit architecture, the decoherence caused by the qubit's charge environment poses a serious obstacle towards large scale quantum computing. The effects of the charge decoherence can be mitigated by operating the qubit in the so-called sweet spot regions where it is insensitive to electrical noise. In this paper, we propose singlet-triplet qubits based on two quantum dots of different sizes. Such asymmetric double quantum dot systems allow the implementation of exchange gates with controllable exchange splitting J operated in the doubly occupied charge region of the larger dot, where the qubit has high resilience to charge noise. In the larger dot, J can be quenched to a value smaller than the intradot tunneling using magnetic fields, while the smaller dot and its larger splitting can be used in the projective readout of the qubit. |
| 536 | _ | _ | |a 144 - Controlling Collective States (POF3-144) |0 G:(DE-HGF)POF3-144 |c POF3-144 |f POF III |x 0 |
| 542 | _ | _ | |i 2015-02-03 |2 Crossref |u http://link.aps.org/licenses/aps-default-license |
| 588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
| 700 | 1 | _ | |a Bluhm, Hendrik |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Mehl, Sebastian |0 P:(DE-Juel1)145051 |b 2 |u fzj |
| 700 | 1 | _ | |a Harju, Ari |0 P:(DE-HGF)0 |b 3 |
| 773 | 1 | 8 | |a 10.1103/physrevb.91.075301 |b American Physical Society (APS) |d 2015-02-03 |n 7 |p 075301 |3 journal-article |2 Crossref |t Physical Review B |v 91 |y 2015 |x 1098-0121 |
| 773 | _ | _ | |a 10.1103/PhysRevB.91.075301 |g Vol. 91, no. 7, p. 075301 |0 PERI:(DE-600)2844160-6 |n 7 |p 075301 |t Physical review / B |v 91 |y 2015 |x 1098-0121 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/187784/files/PhysRevB.91.075301.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/187784/files/PhysRevB.91.075301.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/187784/files/PhysRevB.91.075301.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-700 |u https://juser.fz-juelich.de/record/187784/files/PhysRevB.91.075301.jpg?subformat=icon-700 |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/187784/files/PhysRevB.91.075301.pdf?subformat=pdfa |
| 909 | C | O | |o oai:juser.fz-juelich.de:187784 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)145051 |
| 913 | 0 | _ | |a DE-HGF |b Schlüsseltechnologien |l Grundlagen für zukünftige Informationstechnologien |1 G:(DE-HGF)POF2-420 |0 G:(DE-HGF)POF2-422 |2 G:(DE-HGF)POF2-400 |v Spin-based and quantum information |x 0 |
| 913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-144 |2 G:(DE-HGF)POF3-100 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2015 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-2-20110106 |k PGI-2 |l Theoretische Nanoelektronik |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
| 980 | 1 | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| 999 | C | 5 | |a 10.1103/PhysRevLett.89.147902 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1038/nphys174 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1126/science.1116955 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.98.050502 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1038/nphys1424 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1126/science.1217692 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.96.100501 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.107.030506 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.76.035315 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1038/nature10707 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.110.146804 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.81.045304 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.84.235309 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.88.161408 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.110.140502 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.113.150501 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.82.075319 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1088/1367-2630/15/10/103015 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.90.195424 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.88.226804 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.81.085313 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.72.134519 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.110.086804 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.75.085324 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.86.205306 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.85.035319 |9 -- missing cx lookup -- |2 Crossref |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|