001     187784
005     20230426083117.0
024 7 _ |a 10.1103/PhysRevB.91.075301
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a WOS:000348873800002
|2 WOS
024 7 _ |a 2128/10801
|2 Handle
024 7 _ |a altmetric:2952899
|2 altmetric
037 _ _ |a FZJ-2015-01362
082 _ _ |a 530
100 1 _ |a Hiltunen, Tuukka
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Charge-noise tolerant exchange gates of singlet-triplet qubits in asymmetric double quantum dots
260 _ _ |a College Park, Md.
|c 2015
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1423227593_4290
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In the semiconductor double quantum dot singlet-triplet qubit architecture, the decoherence caused by the qubit's charge environment poses a serious obstacle towards large scale quantum computing. The effects of the charge decoherence can be mitigated by operating the qubit in the so-called sweet spot regions where it is insensitive to electrical noise. In this paper, we propose singlet-triplet qubits based on two quantum dots of different sizes. Such asymmetric double quantum dot systems allow the implementation of exchange gates with controllable exchange splitting J operated in the doubly occupied charge region of the larger dot, where the qubit has high resilience to charge noise. In the larger dot, J can be quenched to a value smaller than the intradot tunneling using magnetic fields, while the smaller dot and its larger splitting can be used in the projective readout of the qubit.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
542 _ _ |i 2015-02-03
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Bluhm, Hendrik
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mehl, Sebastian
|0 P:(DE-Juel1)145051
|b 2
|u fzj
700 1 _ |a Harju, Ari
|0 P:(DE-HGF)0
|b 3
773 1 8 |a 10.1103/physrevb.91.075301
|b American Physical Society (APS)
|d 2015-02-03
|n 7
|p 075301
|3 journal-article
|2 Crossref
|t Physical Review B
|v 91
|y 2015
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.91.075301
|g Vol. 91, no. 7, p. 075301
|0 PERI:(DE-600)2844160-6
|n 7
|p 075301
|t Physical review / B
|v 91
|y 2015
|x 1098-0121
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/187784/files/PhysRevB.91.075301.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/187784/files/PhysRevB.91.075301.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/187784/files/PhysRevB.91.075301.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-700
|u https://juser.fz-juelich.de/record/187784/files/PhysRevB.91.075301.jpg?subformat=icon-700
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/187784/files/PhysRevB.91.075301.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:187784
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145051
913 0 _ |a DE-HGF
|b Schlüsseltechnologien
|l Grundlagen für zukünftige Informationstechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 0
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1103/PhysRevLett.89.147902
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys174
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1116955
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.98.050502
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys1424
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1217692
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.100501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.107.030506
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.035315
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature10707
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.110.146804
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.045304
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.84.235309
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.88.161408
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.110.140502
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.113.150501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.82.075319
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/15/10/103015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.90.195424
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.88.226804
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.085313
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.72.134519
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.110.086804
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.75.085324
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.86.205306
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.85.035319
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21