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In the semiconductor double quantum dot singlet-triplet qubit architecture, the decoherence caused by the

qubit’s charge environment poses a serious obstacle towards large scale quantum computing. The effects of

the charge decoherence can be mitigated by operating the qubit in the so-called sweet spot regions where it

is insensitive to electrical noise. In this paper, we propose singlet-triplet qubits based on two quantum dots of

different sizes. Such asymmetric double quantum dot systems allow the implementation of exchange gates with

controllable exchange splitting J operated in the doubly occupied charge region of the larger dot, where the

qubit has high resilience to charge noise. In the larger dot, J can be quenched to a value smaller than the intradot

tunneling using magnetic fields, while the smaller dot and its larger splitting can be used in the projective readout

of the qubit.
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I. INTRODUCTION

The two-electron unpolarized singlet and triplet states in

semiconductor double quantum dots (DQDs) are a promising

scalable realization for a quantum bit [1,2]. The universal set of

qubit operations [3–6] in this architecture includes one-qubit

rotations generated by electrically detuning the two dots of the

DQD system. These exchange rotations are dephased due to the

charge noise caused by the electrical environment of the qubit

[3,7–12]. Charge noise can be represented by voltage noise

in the detuning of the qubit [11], which results in fluctuations

in the exchange splitting J that affect the frequency of the

exchange rotations and cause decoherence. The charge-based

decoherence is a severe factor that limits the performance of the

singlet-triplet qubits. Thus, there have been several proposals

for mitigating its effects, including multielectron singlet-triplet

qubits [13,14] and optimized gate sequences [15,16].

Another widely investigated possibility is to exploit the

so-called sweet spot regions where the exchange splitting is

insensitive to charge noise in the gate operations [9,11,14,17].

For example, in the far detuned region, where both the

singlet and the triplet are in the doubly occupied charge

states, the qubit is much less susceptible to charge noise as

both of the qubit states have similar charge densities [11].

Utilizing this insensitive region for gate operations requires

rapid switching between the sweet spot and the singly occupied

configuration with one electron in each dot. To prevent

excitation into higher orbital states during this transfer of one

electron from one dot to another, the corresponding change

in detuning needs to be adiabatic with respect to the tunnel

coupling [18]. On the other hand, the phase accumulated

in the doubly occupied configuration should be as small as

possible (of order π ) in order to minimize dephasing. Thus,

the switching time should be on the order of 1/J . Together

with the adiabaticity requirement, this condition implies that

the tunnel coupling must be larger than the exchange splitting.

Furthermore, the limited speed of control electronics favors

switching times not much faster than 1 ns so that exchange

splittings exceeding a few µeV are practically cumbersome.

On the other hand, singlet-triplet qubits typically employ a

Pauli blockade for readout via a spin to charge conversion,

which requires an exchange splitting larger than the tunnel

coupling to maintain good charge contrast. Hence, one faces

two conflicting requirements: small J for high fidelity gates,

but large J for the readout.

In this paper, we propose an asymmetric double quantum

dot (ADQD) system, consisting of two quantum dots with

different sizes, that allows exchange-gate operations with high

tolerance to charge noise in the doubly occupied region of

one dot while double occupation of the other dot is used

for the readout (see Fig. 1). Using out of plane magnetic fields,

the exchange splitting can be set to a small nonzero value for

the exchange gate in the doubly occupied region of the larger

dot. Due to the size difference, the exchange stays large in

the smaller dot, which can be used in the projective readout

of the system. Thus, the conflicting requirements outlined

above can be met simultaneously. Note that asymmetric double

quantum dots have been proposed previously in the context of

the so-called inverted singlet-triplet qubits [19].

II. METHODS

The DQD two-electron system (confined to the xy plane)

is described with the continuum Hamiltonian

Ĥ =
2

∑

j=1

[

[p̂j + eA(rj )]2

2m∗ + V (rj )

]

+
e2

4πǫr12

. (1)

Here, A(rj ) = 1
2
Bz(−yj ,xj ,0) is the magnetic vector potential

corresponding to a homogeneous external magnetic field Bz

and V the electric potential. m∗ ≈ 0.067me and ǫ ≈ 12.7ǫ0

are the effective electron mass and permittivity in GaAs,

respectively.

The electric potential V (r)=V (x,y)=Vc(x,y)+Vd (x,y)

consists of the QD confinement Vc and the detuning potential

Vd . We model the DQD system as two parabolical wells located

at the x axis at R1 = (− a
2
,0) and R2 = ( a

2
,0), where a is the

distance of the QD minima. The detuning Vd (x,y) is modeled

as a step function that assumes the value − ǫ
2

in the left dot (the

one at the negative x axis) and the value ǫ
2

in the right one, with
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FIG. 1. (Color online) The ADQD scheme. The energies of the

singlet (blue lines) and triplet (dashed red lines) are shown in the two

dots [(0,2) and (2,0) configurations] as functions of the detuning of

the dots ǫ. The exchange-gate operations are done in the larger right

dot so that both the singlet and triplet are in the (0,2) configuration.

The projective measurement is conducted using the smaller left dot,

with the singlet in (2,0) and the triplet in (1,1).

ǫ = V (R2) − V (R1) being the energy difference between the

dots.

The electric potential of the ADQD system is illustrated

in Fig. 2. The potentials Vc, Vd , and V = Vc + Vd are shown

in the x axis. The minima of the dots are a = 130 nm apart,

located on the x axis, at ±65 nm. The confinement is piecewise

parabolical, meaning that the confinement strength in the x

direction has different values in different regions. The (singlet)

intradot tunneling has the values 55 and 38 µeV at Bz = 0

and 0.87 T magnetic fields, respectively. The actual form of

the dots (e.g., whether they are elliptical or circular) was not
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FIG. 2. (Color online) The electric potential in the x axis of the

DQD system. The piecewise parabolic confinement Vc is shown as

the blue line. The minima of the dots are at x = ±65 nm on the x axis

and the confinement strength in the y direction is �ω0 = 2.5 meV.

The regions of different x confinements ωx are shown with the dashed

vertical lines. The detuning potential Vd , with ǫ = −4 meV, is shown

in red, and the combined electric potential V = Vc + Vd as the dashed

purple line.

found to have significant effects on the physics of the system.

The piecewise quadratic form was chosen because it allows

the control of the tunneling and the J splitting independently.

The Hamiltonian (1) is diagonalized using the exact

diagonalization (ED) method and the Lanczos algorithm. In

the Lanczos method, only the ground state and its energy

are obtained accurately. The higher lying eigenstates can be

obtained using a “ladder operation.” The kth state |ψk〉 is

obtained as the ground state of the Hamiltonian

Hk = H + δ

k−1
∑

s=1

|ψs〉〈ψs |, (2)

where H is the original Hamiltonian of the system and δ >

0 is a penalizing constant that moves the lower eigenstates

{|ψ〉s}k−1
s=1 above the desired kth state.

In the ED many-body calculations, the one-particle basis

consists of the eigenstates corresponding to the confinement

potential V . The multiparticle basis is constructed from the

single-particle basis as the antisymmetrized Fock states. The

one-particle eigenstates {|ψp〉}N1

p=1 (the eigenbasis size being

N1) are computed using the multicenter Gaussian basis {|φi}
Ng

i=1

(this method is described in detail by Nielsen et al. [17]).

The electron-electron interaction matrix elements Vi,j,k,l =
〈φi |〈φj | 1

r12
|φl〉|φk〉 and the electric potential elements Vi,j =

〈φi |Vc(r)|φj 〉 can be obtained analytically in this basis. The

matrix elements Ṽp,q and Ṽp,q,r,s corresponding to the one-

particle eigenstates are then computed from the Gaussian

elements by basis changes.

In the computation of the one-particle eigenstates,

{|ψp〉}N1

p=1, an evenly spaced grid of several hundred Gaussian

functions (up to Ng = 500) is used. The grid dimensions

and the Gaussian widths are optimized and the convergence

of the states is verified by comparing the energies to ones

obtained with a much larger grid. We perform the basis change

corresponding to the elements Ṽp,q,r,s with an Nvidia Tesla

C2070 graphics processing unit, which was programed with

CUDA, a parallel programming model for Nvidia GPUs. The

many-body eigenstates are computed with ED using 50 first

single-particle states (N1 = 50). This basis size is found to

be sufficient for the convergence of the results (the relative

difference of the two-body singlet and triplet energies with 45

and 50 single-particle states is less than 0.1% up to very high

detuning regions).

III. EXCHANGE GATES

A. Magnetic control of the exchange spiltting

In singlet-triplet qubits, the exchange interactions create an

energy splitting J = ET0
− ES between the singlet |S〉 and

Sz = 0 triplet |T0〉. When the qubit is in the (1,1)-charge

configuration (i.e., one electron in each dot), the exchange

is typically very close to zero, in the sub-µeV region. It

can be turned on by detuning one of the dots of the DQD

system to a lower potential. As the detuning is increased, it

will eventually overcome the Coulomb repulsion and both

electrons will localize to the dot with the lower potential. In

the zero or low magnetic field, the S = 0 singlet is the ground

state and the transition to the doubly occupied (2,0) and (0,2)
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FIG. 3. (Color online) The ground state spin as a function of the

magnetic field Bz and the detuning ǫ (negative values of ǫ correspond

to the right dot in low potential and positive to the left dot) in the

ADQD system of Fig. 2. The boundary curve between the S = 0 and

S = 1 ground states is shown with the black line. The dashed red lines

denote the boundaries of the regions where both the singlet and the

triplet are in the doubly occupied charge states. Inset: The magnetic

field dependence of the absolute value of the exchange energy J in the

larger dot. Here, the detuning is ǫ = −4 meV, corresponding to the

region where both |S〉 and |T0〉 are in the (2,0)-charge configuration.

states happens at lower detuning values in the |S〉 state than in

the |T0〉 state. However, increasing the Bz magnetic field will

eventually shift the triplet as the ground state [20]. The ground

state spin in the DQD system of Fig. 2 is plotted in Fig. 3 as a

function of the magnetic field Bz and the detuning ǫ.

As seen in the figure, the spin phase boundary becomes a

straight line at high detuning (ǫ < −2 meV or ǫ > 4 meV), i.e.,

the transition to the S = 1 ground state happens at a fixed value

of Bz regardless of the detuning. This is due to the transition

to the doubly occupied (2,0) and (0,2) states. When both the

singlet and the triplet have undergone the transition, the system

behaves as a doubly occupied single dot, and the detuning just

lowers the energies ES and ET0
but keeps J (approximately)

constant. In the figure, the transition value is Bz = 0.893 T

in the right dot and Bz = 1.07 T in the smaller left dot. The

transition values of Bz depend on the confinement strengths

of the dots. The larger the dot, the lower is the transition

value. Along the transition boundary, the |S〉 and |T0〉 states

are degenerate.

The ADQD system allows the implementation of single-

qubit exchange gates that are operated in the doubly occupied

region with a magnetically controllable value of J . The

perpendicular magnetic field is set to a value that is close to

the S = 1 transition in the larger dot to obtain a J splitting of

a few µeVs (smaller than the intradot tunneling) in the doubly

occupied (0,2) region of the larger right dot. We found that

in the zero magnetic field, one would need to have very large

dots with wave function diameters close to 1 µm to quench J

this small in the doubly occupied region.

The inset in Fig. 3 shows the absolute value of the exchange

energy in the doubly occupied region of the larger right dot as

a function of the magnetic field Bz. Here, the detuning is ǫ =
−4 meV, corresponding to the region where both the singlet

and the triplet are in the (0,2)-charge configuration. As seen

in the figure, J is approximately linear in Bz close to the

S = 1 transition values. At the spin phase boundary (at Bz =
0.893 T), J changes sign, i.e., the triplet becomes the ground

state, as seen in the kink at the |J | curve of the inset.

B. Protection against charge noise

The |S(0,2)〉 and |T0(0,2)〉 states have close to identical

charge densities, as shown in the the left panels of Fig. 4,

allowing protection against electrical noise. The charge
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FIG. 4. (Color online) Left: The charge density of the singlet ρS (the upper plot) and the difference of the singlet and the triplet ρS − ρT0

(the lower plot) in the (0,2) configuration with the magnetic field strength Bz = 0.87 T (the states are localized in the right dot, so the left dot

is omitted in the pictures). The ADQD-system parameters are as in Fig. 2. The detuning is ǫ = −4 meV, corresponding to an exchange energy

of J = 1.7 µeV. Here, the unit of the densities is e/nm2. Right: The exchange energy J (upper plot) and its derivative dJ/dǫ (lower plot) as

functions of the detuning ǫ. The results are shown with several values of Bz taken near the spin phase transition at Bz = 0.893.
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difference between the singlet and the triplet in the left

dot is 	qright = q
right

S − q
right

T0
= 4.7 × 10−5e (obtained by

integrating the difference of the lower plot). This is in stark

contrast to the traditional exchange-gate implementation,

where the gate is operated near the singlet (0,2) transition while

the triplet stays fully in (1,1). In this case, the charge difference

(corresponding to the same J value as in the doubly occupied

case above) is 	qright = q
right

S − q
right

T0
= 2.7 × 10−2e, more

than three orders of magnitude larger. In the (0,2) configura-

tion, the qubit states are also protected from the hyperfine

induced decoherence, as both electrons are localized in the

same dot and the hyperfine effects are suppressed under

exchange [3]. In the (1,1) configuration, the qubit is still

susceptible to hyperfine decoherence completely similarly to

the regular S-T0 qubits. The asymmetry of the dots should not

cause effects in this regard.

Decoherence by charge noise in S-T0 qubits has been

measured to behave as ǫ noise [11], meaning that charge

noise manifests itself as effective fluctuations in the qubit’s

detuning ǫ. The decoherence from charge noise is thus mainly

governed by |dJ/dǫ|. The right panels of Fig. 4 show J and

its derivative |dJ/dǫ| as a function of the detuning ǫ. As seen

in the figures, J stays approximately constant after the charge

transitions (ǫ < −2 meV). There is, however, a small, close to

linear, ǫ dependence even in the (0,2) region. This is explained

by the fact that the wave functions of the singlet and triplet

have small finite values in the barrier between the dots. The

residual dependence can be decreased by lowering the intradot

tunneling, i.e., increasing the barrier between the dots (the

tunneling value in the system of Fig. 2 is quite large; 55 and

38 µeV at Bz = 0 and 0.87 T magnetic fields, respectively).

The actual form of the confinement may also have quantitative

effects [21], but these are expected to be negligible as the

amplitude of the wave function tail in the barrier, depending

mainly on the barrier width and height, is very small in a

typical singlet-triplet qubit operation.

In any case, the values of |dJ/dǫ| in this proposed

(0,2) operation stay much lower than in the corresponding

traditional S(0,2)-T0(1,1) exchange gates. For example, in the

Bz = 0.850 T curve that corresponds to J = 3.07 µeV, the

derivative has the value |dJ/dǫ| = 1.26 × 10−4. If one were

to create the same exchange splitting J = 3.07 µeV in the

(1,1)-(0,2) transition region, the derivative would be several

hundred times larger, |dJ/dǫ| = 2.59 × 10−2, corresponding

to the case where the smaller dot in Fig. 2 is detuned to low

energy in Bz = 0. In the bigger dot or nonzero fields, the

derivative would be even larger, as the S-T0 splitting stays

smaller, and larger charge density differences are needed for

the same exchange splitting.

The loss of coherence for a given pulse sequence, evolution

time, and noise spectrum, which is the ultimate figure of

merit for qubit operations, can be shown to be proportional

to (dJ/dǫ)2 [9,22]. Thus, we find that an improvement of two

orders of magnitude is possible. When considering dephasing

times, dJ/dǫ enters linearly for T ∗
2 arising from quasistatic

noise, and quadratically for T ∗
2 arising from white noise. In the

former case, the coherence time can be computed as [11,23]

T ∗
2 =

√
2�

dJ
dǫ

ǫrms

, (3)

where ǫrms is the root-mean-squared fluctuation of the detun-

ing. For example, in the paper by Dial et al. in Ref. [11],

ǫrms = 1 µeV, taking into account a lever arm of order 0.1

for converting gate voltages to detuning. Using this value

and the derivative values corresponding to J = 3.07 µeV,

|dJ/dǫ| = 1.275 × 10−4, and |dJ/dǫ| = 2.594 × 10−2, one

obtains the coherence times T ∗
2 = 30 ns and T ∗

2 = 6.2 µs in

the (1,1) and (0,2) operations, respectively. The fidelity of a

π pulse around the z axis in the Bloch sphere is then given as

[11]

f (Tπ ) = exp

[

−
(

�π

JT ∗
2

)2
]

, (4)

giving 1 − f (Tπ ) = 1.2 × 10−8 in the (0,2) operation, while

the (1,1) operation gives 1 − f (Tπ ) = 5.1 × 10−4 (f ≡ 1 for

ideal processes; noisy time evolutions lower f to magnitudes

smaller than 1).

IV. PROJECTIVE READOUT

Next, we discuss the projective readout [3,9] of the ADQD

system done in the smaller left dot. The singlet probability is

measured by sweeping the detuning to a region where only the

singlet is in the doubly occupied configuration. The difference

in the values of Bz corresponding to the S = 1 transition in

(2,0) and (0,2) allows the smaller dot to have large J values and

charge density differences between the qubit states, while in

the right dot the doubly occupied states are nearly degenerate.

The anticrossing of the charge states in the left dot for the same

system as in Figs. 3 and 4 is shown in Fig. 5. Between the

singlet and triplet anticrossings (3.45 meV < ǫ < 3.70 meV),
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FIG. 5. (Color online) The energies of the lowest singlet and

triplet states at their charge transition anticrossings in the smaller left

dot of the ADQD system of Fig. 2. The magnetic field is Bz = 0.87 T,

which corresponds to close to identical charge densities in the larger

dot (see Fig. 4). The singlet states are shown with blue lines and

the triplets with red dashed lines. The insets show the densities

(the unit is e/nm2) of the lowest |S〉 and |T0〉 states taken at ǫ =
3.57 meV (denoted by the arrows and the dashed-dotted vertical line

in the figure).
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there is a region where the singlet is fully in (2,0) while the

triplet is in (1,1). The insets in the left panel show the singlet

and triplet charge densities taken at ǫ = 3.57 meV between

the anticrossings. In the insets, the amount of charge in the

right dot is q
right

T0
= 0.900e in the triplet and q

right

S = 0.0993e

in the singlet.

We find from additional simulations that tighter con-

finement allows a better “performance” in terms of the

measurement. In these smaller systems (e.g., a system with

a = 80 nm and �ω0 = 4 meV), the distance between the

singlet and triplet (0,2) anticrossings is relatively larger. Thus

there are regions between the anticrossings where S is fully

in (2,0) (q
right

S is very close to zero) while |T0〉 still has not

started to undergo its transition (q
right

T0
is very close to one).

Also, quenching the tunneling will make the anticrossing area

effectively larger. However, a too small tunneling can lead to

leakage problems when sweeping the system from (2,0) to

(0,2) [18].

V. QUBIT OPERATION

Finally, we will shortly discuss general gate operation in

ADQD singlet-triplet qubits. The x rotations in the Bloch

sphere are generated with magnetic field gradients as in the

conventional S-T0 qubits [5]. The magnetic field gradient

between the two dots of the system can be simulated by adding

a Zeemann term VZ(r) = g∗µBBnuc(r)Sz to the Hamiltonian

of Eq. (1). Here, the inhomogeneous magnetic field Bnuc is

modeled as a step function that assumes constant values at

each dot. As expected, these additional simulations show that

the x rotations done in the (1,1)-charge configuration are

found to work completely similarly to the conventional case.

The two-qubit operations can also be implemented the same

way as conventionally: capacitatively [using the smaller dot

and the “typical” S(0,2)-T0(1,1) detuning regime] [2,6,24]

or with exchange based methods [1,25]. The latter would

benefit from the improved charge-noise resilience discussed

here. There has also been a proposal for using the double

occupation region in capacitative coupling [26], which could

offer large enhancements to the coherence times in the two-

qubit operation. This scheme could also benefit from the

ADQD S-T0 qubit implementation and the magnetic field

control of J , as it would allow the quenching of J to the

subtunneling scale.

The z rotations done in the deep (2,0) region require fairly

large detuning pulses to move the system between the (2,0) and

(0,2) regions. A too fast detuning pulse can lead to charge state

leakage that can be mitigated by enhancing the tunneling. In

the system studied, the tunneling is 38 µeV in the field Bz =
0.87 T. Assuming linear detuning pulses and Landau-Zener

type transitions, we find that the leakage in the detuning sweep

from ǫ = −3 to 4 meV is negligible if the pulse duration is

above 5 ns. In experiments, however, the pulses are not linear,

instead they can be faster in the regions where J grows slowly

[5], allowing shorter overall durations. As the magnetic field

is found to quench the tunneling value between the dots, the

ADQD scheme might require somewhat shorter dot distances

than the conventional S-T0 qubits operated in low magnetic

fields to ensure large enough tunneling.

A potential difficulty when implementing the ADQD

scheme discussed in this paper is that since J is independent of

detuning, the rotation angle of a gate cannot be controlled by

the pulse amplitude. Instead, the pulse duration must be used,

which is less flexibly controllable on current pulse generators.

Furthermore, larger voltage pulses spanning all the way from

(0,2) to (2,0) are required for readout.

VI. SUMMARY

We have simulated a singlet-triplet qubit based on an

asymmetric double quantum dot system. The size difference

of the dots allows the larger one to be used in exchange-gate

operations with a moderate and controllable J splitting done in

the far detuned (0,2) regime, while when detuning the smaller

dot to low potential, the splitting stays large enough for the

projective readout of the qubit. In the far (0,2) regime, the

S and T0 states have similar charge densities which results in

weaker coupling between the qubit and its charge environment.

The detuning dependence of J was found to be very small in

the (0,2) region, resulting in high resistance to ǫ noise, which

is the dominant form of charge noise. The ADQD scheme

allows for a noise resistant implementation of exchange gates

in singlet-triplet qubits, alleviating the crucial problem of

decoherence in this quantum computing architecture.
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