000187869 001__ 187869
000187869 005__ 20240712101035.0
000187869 0247_ $$2doi$$a10.5194/gmdd-8-1077-2015
000187869 0247_ $$2ISSN$$a1991-9611
000187869 0247_ $$2ISSN$$a1991-962X
000187869 0247_ $$2Handle$$a2128/8394
000187869 037__ $$aFZJ-2015-01386
000187869 082__ $$a910
000187869 1001_ $$0P:(DE-HGF)0$$aKatragkou, E.$$b0$$eCorresponding Author
000187869 245__ $$aEvaluation of near surface ozone over Europe from the MACC reanalysis
000187869 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2015
000187869 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1428587542_24254
000187869 3367_ $$2DataCite$$aOutput Types/Journal article
000187869 3367_ $$00$$2EndNote$$aJournal Article
000187869 3367_ $$2BibTeX$$aARTICLE
000187869 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000187869 3367_ $$2DRIVER$$aarticle
000187869 520__ $$aThis work is an extended evaluation of near surface ozone as part of the global reanalysis of atmospheric composition, produced within the European Funded project MACC (Monitoring Atmospheric Composition and Climate). It includes an evaluation over the period 2003–2012 and provides an overall assessment of the modelling system performance with respect to near surface ozone for specific European subregions. Measurements at rural locations from the European Monitoring and Evaluation Program (EMEP) and the European Air Quality Database (AirBase) were used for the evaluation assessment. The annual overall error of near surface ozone reanalysis is on average 24% over Europe, the highest found over Scandinavia (27%) and the lowest over the Mediterranean marine stations (21%). Near surface ozone shows mostly a negative bias in winter and a positive bias during warm months. Assimilation reduces the bias in near surface ozone and its impact is mostly notable in winter. With respect to the seasonal cycle, the MACC reanalysis reproduces the photochemically driven broad spring-summer maximum of surface ozone of central and south Europe. However, it does not capture adequately the early spring peak and the shape of the seasonality at northern and north-eastern Europe. The diurnal range of surface ozone, which is an indication of the local photochemical production processes, is reproduced fairly well, with a tendency for a small overestimation during the warm months for most subregions (especially in central and southern Europe). Possible reasons leading to discrepancies between the MACC reanalysis and observations are discussed.
000187869 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000187869 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000187869 536__ $$0G:(EU-Grant)218793$$aMACC - Monitoring Atmospheric Composition and Climate (218793)$$c218793$$fFP7-SPACE-2007-1$$x2
000187869 536__ $$0G:(EU-Grant)283576$$aMACC II - Monitoring Atmospheric Composition and Climate Interim Implementation (283576)$$c283576$$fFP7-SPACE-2011-1$$x3
000187869 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000187869 7001_ $$0P:(DE-HGF)0$$aZanis, P.$$b1
000187869 7001_ $$0P:(DE-HGF)0$$aTsikerdekis, A.$$b2
000187869 7001_ $$0P:(DE-HGF)0$$aKapsomenakis, J.$$b3
000187869 7001_ $$0P:(DE-HGF)0$$aMelas, D.$$b4
000187869 7001_ $$0P:(DE-HGF)0$$aEskes, H.$$b5
000187869 7001_ $$0P:(DE-HGF)0$$aFlemming, J.$$b6
000187869 7001_ $$0P:(DE-HGF)0$$aHuijnen, V.$$b7
000187869 7001_ $$0P:(DE-HGF)0$$aInness, A.$$b8
000187869 7001_ $$0P:(DE-Juel1)6952$$aSchultz, Martin$$b9$$ufzj
000187869 7001_ $$0P:(DE-Juel1)3709$$aStein, O.$$b10$$ufzj
000187869 7001_ $$0P:(DE-HGF)0$$aZerefos, C. S.$$b11
000187869 773__ $$0PERI:(DE-600)2456729-2$$a10.5194/gmdd-8-1077-2015$$gVol. 8, no. 2, p. 1077 - 1115$$n2$$p1077 - 1115$$tGeoscientific model development discussions$$v8$$x1991-962X$$y2015
000187869 8564_ $$uhttp://www.geosci-model-dev-discuss.net/8/1077/2015/gmdd-8-1077-2015.html
000187869 8564_ $$uhttps://juser.fz-juelich.de/record/187869/files/FZJ-2015-01386.pdf$$yOpenAccess
000187869 909CO $$ooai:juser.fz-juelich.de:187869$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000187869 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6952$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000187869 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)3709$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000187869 9130_ $$0G:(DE-HGF)POF2-233$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTrace gas and aerosol processes in the troposphere$$x0
000187869 9130_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000187869 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000187869 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000187869 9141_ $$y2015
000187869 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000187869 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000187869 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000187869 920__ $$lyes
000187869 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000187869 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000187869 9801_ $$aFullTexts
000187869 980__ $$ajournal
000187869 980__ $$aVDB
000187869 980__ $$aI:(DE-Juel1)IEK-8-20101013
000187869 980__ $$aI:(DE-Juel1)JSC-20090406
000187869 980__ $$aUNRESTRICTED
000187869 980__ $$aFullTexts
000187869 981__ $$aI:(DE-Juel1)ICE-3-20101013
000187869 981__ $$aI:(DE-Juel1)JSC-20090406